Synthesis, X-ray structure and antibacterial evaluation of P-[\{[bis (dimethylamino)phosphoryl]amino]\} (2-chloroquinolin-3-yl) methyl]-, P - (quinolin-3-yl) tetramethylphosphonic diamides

Mona Arsanious ${ }^{1, *}$, Ibtisam Henawy ${ }^{1}$ and Lara Gigli ${ }^{2}$
${ }^{1}$ Organometallic and Organometalloid Chemistry Department, National Research Centre, El Behoose St. Dokki, Giza, P.O. Box 12622, Egypt
${ }^{2}$ Elettra-Sincrotrone Trieste ss 14, Km 163.5, 34149 Basovizza, Trieste Italy

Abstract

A new P-bis [(dimethylamino) phosphoryl] amino\} (2-chloroquinolin-3-yl) methyl]- $N, N, N^{\prime}, N^{\prime}-$ tetramethylphosphonic diamide was synthesized by the reaction of trisdiaminophosphine to 2-chloroquinolin-3aldoxime. The structure of P-bis [(dimethylamino) phosphoryl] amino\} (2-chloroquinolin-3-yl) methyl]- N, $N, N^{\prime}, N^{\prime}$ - tetramethylphosphonic diamide is confirmed by X-ray diffraction studies. On the other hand, the neucluphilic attack of aminophosphine on 2-chloroquinolin-3-carboimines produced different products, depending on the stability of dipolar phosphorylhexamethyl amide intermediates. Furthermore, the reaction of 3-((5-oxo-2-phenyl-oxazol-4(5H)-ylidene) methyl) quinolin-2(1H)-one with phosphine yielded alkene adduct, the Z structure is confirmed by X-ray analysis. P-[(2-Chloro-quinolin-3-yl)(5-hydroxy-3-methyl-1-phenyl- $1 H$-pyrazol-4-yl) methyl]- N, N, N, N, tetramethyl-phosphonic diamide was obtained from reaction of 4-((2-chloro-quinolin-3-yl) methylene)-3-methyl-1- phenyl-1H-pyrazol-5(4H)- one with reagent trisdiaminophosphine. Antibacterial evaluation of most compounds exhibited moderate activity to Gram positive and Gram-negative bacteria species.

Keywords: Trisdiaminophosphine; Chloroquinolin-3-carbaldehydes; Tetremethylphosphnic diamides; X-ray crystallography; Antibacterial evaluation.

1. Introduction

Organophosphorus compounds (OPCs) are essential in agriculture, industry, biological, and pharmacy applications ${ }^{1-3}$. A large family of OPCs has represented an attractive approach for developing new pharmaceutical drugs ${ }^{4}$.

Many phosphorus-containing drugs are designed in O-P, phosphonates C-P, phosphorotriamidates, bisphosphonates P-C-P, and phosphoramides to achieve higher selectivity and bio-availability (Fig. 1). For example, phosphonate derivatives of heterocyclic bases have been shown to inhibit nucleoside
phosphorylase by Tenofovir disoproxil phosphate and also inhibit nucleotide analogs reverse-transcriptase (NtRTI) for hepatitis B therapy. Remdesivir is an antiviral nucleotide analog, recently authorized for emergency use as a drug against COVID-19. At the same time, sofosbuvir is a nucleotide analog inhibitor of NS5B polymerase developed for hepatitis C therapy (Fig) ${ }^{5-7}$. Chloroquine phosphate is an autophagy and toll-like receptors (TLRs) inhibitor and is highly effective in controlling SARS-CoV-2 (COVID-19) infection in vitro. Also, pyridyl-base derivatives exhibit antioxidant, antiviral, and antimicrobial activity ${ }^{8,9}$.

Tolfamide

Flurofamide

(S)-HPMPA(Antiviral drug)

Tenoforvir disoproxil

Remdesivir

Chloroquine phosphate

Figure 1. Structures of phosphorotriamidate phosphonate and α-aminophosphonic acid derivatives

The present study deals with the synthesis of quinoline derivatives bearing functional phosphorus residues. In order to implement this goal, the reactions of 2-chloroquinoline-3-carbaldehyde derivatives 2a-
$\mathbf{d}, \mathbf{7}$, and $\mathbf{9}$ with tris(di-methylamino) phosphine $\mathbf{1}$ have been investigated. X-ray crystallography studies were reported for new products $\mathbf{3}$ and 8 . Moreover, their antibacterial activities were evaluated (Fig. 2).

2 a, $\mathrm{R}=\mathrm{OH}$
7

$\mathrm{b}, \mathrm{R}=-\mathrm{HN} \longrightarrow$

$\mathbf{d}, \mathbf{R}=\left\langle{ }^{\mathbf{N}}\right\rangle$
Figure 2. Starting materials

2. Results and Discussion

$P-\{B i s[($ dimethylamino $)$ phosphoryl]amino $\}$ (2-chloroquinolin-3-yl)methyl]N,N,N', N'-tetramethyl phosphonic diamide compound $\mathbf{3}$ was obtained through reaction of trisdiaminophosphine 1 with 2-chloroquinolin-3-aldoxime 2a in $10 \mathrm{~cm}^{3}$ of DMF and heating in an oil bath at $108^{\circ} \mathrm{C}$ for $2 \mathrm{hrs} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ exhibited two doublets at
$\delta \quad 2.12, \quad 2.61 \mathrm{ppm}$ for $\left[\mathrm{P}-\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right]_{2}, \quad 24 \mathrm{H}$, $J_{H P}=8.60 \mathrm{~Hz}$) and doublet of a doublet at $\delta 5.47$ ($J_{H p}=15.68 \mathrm{~Hz},{ }^{2} J_{H P}=7.48 \mathrm{~Hz}$) due to P-CH-N-P proton ${ }^{10}$. On the other hand ${ }^{13} \mathrm{C}$ NMR spectrum showed NMe_{2} at $\delta=36.8$, whereas $\mathrm{P}-\mathrm{CH}-\mathrm{N}-\mathrm{P}$ at $\delta=49.4\left(\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{P},{ }^{1} J_{\mathrm{CP}}=96 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=38 \mathrm{~Hz}\right)$. Moreover, the assigned structure of compound $\mathbf{3}$ was unambiguously supported by X-ray analysis (Fig. 3).

Figure 3. ORTEP diagram of compound 3

The formation of compound $\mathbf{3}$ is outlined in Scheme 1. Initially, the reaction involved dehydration of -$\mathrm{CH}=\mathrm{N}-\mathrm{OH}$ group in 2a, followed by nucleophilic attack of one molecule phosphine $\mathbf{1}$ on the produced nitrile to generate the dipolar intermediate (A). Molecular rearrangement of (A), followed by the
addition of one molecule of water and attack of another molecule of phosphine $\mathbf{1}$ to imine group $\mathrm{HC}=\mathrm{N}-\mathrm{P}$, led to the formation of intermediate (B). Finally, the sequence of addition of the element of water and ejection of two moles of $\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2}$, resulted in the formation of compound $\mathbf{3}^{11,12}$.

Scheme 1. Formation of compound 3

N,N,N',N'-tetramethyl-P-[(2-oxo-1,2-dihydro quinolin-3-yl) (2-phenylhydrazinyl) methyl] phosphonic diamide 4 was obtained from the reaction of 1-((2- chloroquinolin-3yl)
(methylene))-2-phenyl-hydrazine 2 b with the
amino-phosphine reagent 1 in refluxing toluene. The structure of compound 4 is based on ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-NMR, and mass spectral data. The formation of compound 4 is outlined in Scheme 2^{1}

Scheme 2. Formation of compound 4

On the other hand, the reaction of trisaminophosphine 1 with 2-chloroquinoline-3-imine 2c yielded phosphorylated adduct 5. The assigned structure 5 was based on the ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, and mass spectral data. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 5 exhibited two doublets that appeared at $2.25,2.71\left(12 \mathrm{H},{ }^{3} J_{\mathrm{HP}}=10.4\right.$ $\mathrm{Hz})$ due to protons of the two N, N-dimethylamino
groups. Methylene protons appeared as two dd which are centered $\delta=4.67,4.65\left(J_{H H}=12.40 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{\mathrm{HP}}=8.80 \mathrm{~Hz}\right)$, and $\delta=4.75,4.70\left(J_{H H}=12.80 \mathrm{~Hz}\right.$, $J_{H P}=8.80 \mathrm{~Hz}$). The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 5 showed signals at 36.3 corresponding to $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ and 52.6 due to $\mathrm{CH}_{2},{ }^{2} J_{C P}=30.0 \mathrm{~Hz}$. The formation of 5 is explained in Scheme 3.

Scheme 3. Formation of compound 5

Treatment of compound 2d with trisdimethylaminophosphine $\mathbf{1}$, led to the formation of compound 6. The structure of compound 6 was
established based on its spectral data (${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, MS, IR). The formation of compound $\mathbf{6}$ is explained in Scheme 4.

2d

$\xrightarrow{-(\mathrm{O}) \mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}}$

Scheme 4. Formation of compound 6
[(Z)-3-(Dimethylamino)-3-oxo-1-(2-oxo-1,2dihydro quinolin-3-yl) propenyl] benzamide $\mathbf{8}$ is derived from the reaction of 3-(5-oxo-2-phenyl-oxazol- $4(5 \mathrm{H})$-quinolin- $2(1 \mathrm{H})$-one $\quad 7 \quad$ with
aminophosphine 1, using DMF as solvent. The X-ray crystallographic analysis confirmed the existence of compound $\mathbf{8}$ in Z-structure (Fig. 4, Table 1).

Figure 4. ORTEP diagram of compound 8

The formation of compound $\mathbf{8}$ is outlined in Scheme 5. The initial step involved hydrolysis of lactone function followed by the attack of the phosphine 1 to
β-unsaturated carboxylic group to produce 3-[(dimethylamino)-3-oxo-1-(2-oxo-1,2-dihydro-quinolin-3-yl) propenyl] benzamide 8 Scheme 5^{13}.

Scheme 5. Formation of compound 8

4-((2-chloroquinolin-3-yl)methylene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one 9 reacted with aminophosphine $\mathbf{1}$ to give compound $\mathbf{1 0}$.
${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, mass, and IR spectral data confirmed the structure of $\mathbf{1 0}$. The formation of compound $\mathbf{1 0}$ is outlined in Scheme 6.

Scheme 6. Formation of compound 10

2.1. Crystallographic analysis

2.1.2. X-ray Crystal structure determination

Intensity data of X-ray crystals $\mathbf{3 , 8}$ were collected at 100(2) K at the XRD1 beam line of the Electra Synchrotron, Trieste (Italy) ${ }^{14}$, using a monochromatic wavelength of $0.700 \AA$ on a Pilatus 2 M hybrid-pixel area detector (DECTRIS Ltd, Baden-Daettwil, Switzerland) Table 1. CCDC 2086490 for compound 3; CCDC number: 2171880 for compound $\mathbf{8}$ contains the supplementary crystallographic data. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033, or e-mail: HYPERLINK"mailto: deposit@ccdc.cam. ac.uk "deposit@ccdc.cam.ac.uk.
The crystals of compound $\mathbf{3}$ were dipped in NHV oil (Jena Bioscience, Jena, Germany) and mounted on the goniometry head with nylon loops. During data collection, no crystal decay was observed. Data reductions were performed with XDS ${ }^{15}$. All the structures were solved with SHELXT ${ }^{16}$ and refined with SHELXL-2018/3 implemented in WinGX Version 2014.1 system. The program Mercury ${ }^{17}$ was used for graphics. Thermal motions for all nonhydrogen atoms were treated anisotropically, and hydrogens were included in calculated positions,
riding on their carrier atoms. Hydrogen atoms were included at calculated positions with isotropic $U_{\text {factors }}=1.2 \times U_{\text {eq }}$ or $U_{\text {factors }}=1.5 \times U_{\text {eq }}$ for methyl groups ($U_{\text {eq }}$ being the equivalent isotropic thermal factor of the bonded nonhydrogen atom).

Compound $\mathbf{3}$ crystallizes in the orthorhombic space group Pbca with eight molecules in the unit cell, i.e. one molecule per asymmetric unit cell. Fig. 3 illustrates the ORTEP diagram of 3 .

Considering that the compound crystallized in a centrosymmetric space group, the structure is racemic despite the asymmetric unit containing only an enantiomer. While the angles C3-C4-P1 (106.24(8)), C3-C4-N1(114.61 (10)), and P1-C4-N1 (108.76(8)) have values close to 109.5°, the angle formed by P2$\mathrm{N} 1-\mathrm{C} 4$ (121.94(8)) is close to 120°, indicating a resonance involving the $\mathrm{P} 2-\mathrm{N} 1$ and the $\mathrm{P} 2-\mathrm{O} 1$ bonds (Fig. 3).
Generally, this compound's bond lengths and angles (Table S3) are comparable to the solved structure by ${ }^{18}$, and others have similar construction ${ }^{19-24}$. A view of the packing diagram (Fig. 5) shows that the crystal structure of $\mathbf{3}$ is stabilized through two strong intermolecular hydrogen bonds $\mathrm{N}(1)-\mathrm{H} . . \mathrm{O}(2)$ (Fig. 5 and Table 2), allowing the formation of dimmers ${ }^{25-26}$. In addition, other weaker hydrogen
bonds are observed between methyl groups and nitrogen and oxygen atoms within the same molecule (Table 2) ${ }^{14-20}$. The 2 -chloroquinoline group is predominantly planar, and the plane that contains the two phosphorus atoms and carbon C4 atom is nearly
perpendicular to that of 2-chloroquinoline with a dihedral angle of 89.1° (Fig. 6). The P-O bonds point in opposite directions concerning the plane P2-C4-P1.

Table 1. Crystallographic data for compounds 3 and 8.

	3	8
Crystal Data		
Moiety formula	$\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M / D a$	460.88	361.39
Crystal system	Orthorhombic	triclinic
Space group	Pbca(n.61)	$P-1$
a / \AA	15.107(3)	11.032(2)
b/ A	15.246(3)	12.494(3)
c/ \AA	19.684(4)	13.818(3)
$\alpha{ }^{\circ}$	90	86.16(3)
$\beta 1^{\circ}$	90	79.40(3)
$\gamma 1^{\circ}$	90	76.06(3)
$V / \AA^{3}, Z$	4533.6(16), 8	1816.5(7)
Temperature / K	100(2)	100(2)
Reflns for cell det	12498	12498
$\theta /{ }^{\circ}$ for cell det	0.98-29.98	0.98-29.98
$D_{x} / \mathrm{Mg} \mathrm{m}^{-3}$	1.35	1.321
Colour, habit	Light yellow, plates	Light yellow, plates
Data Collection		
Temperature / K	100(2)	100(2)
radiation $\lambda /$ A	synchrotron, 0.700	synchrotron, 0.700
Scan type	φ	
$2 \theta_{\text {max }} /{ }^{\circ}$	59.96	59.96
h range	$-21 \rightarrow 21$	$-15 \rightarrow 15$
k range	$-21 \rightarrow 20$	$-17 \rightarrow 17$
l range	$-23 \rightarrow 28$	$-19 \rightarrow 19$
Measured reflns	6892	10522
Reflns with $I>2 \sigma(I)$	5797	9885
$R_{\text {int }}$	0.0368	0.0465
Refinement on F^{2}		
$R_{l}, w R_{2}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0389, 0.1066	0.0465,0.1304
$R_{1}, w R_{2}$ [all data]	0.0452, 0.1125	0.0482,0.1323
S	1.037	1.037
Params, restraints	270, 0	491.0
$(\Delta /)_{\text {max }}$	0.001	0.001

Table 2. Inter- and intra-molecular hydrogen bonds for compound 3.

Type	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
Inter	$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2) \mathrm{i}$	0.88	2.08	$2.869(1)$	148.9
	$\mathrm{C}(4)-\mathrm{H}(4) \cdots \mathrm{O}(1)$	1.00	2.46	$2.974(1)$	111.1
Intra	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B}) \cdots \mathrm{N}(22)$	0.98	2.43	$2.944(2)$	112.3
	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B}) \cdots \mathrm{O}(1)$	0.98	2.45	$2.934(2)$	110.2
	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B}) \cdots \mathrm{N}(1)$	0.98	2.45	$2.958(2)$	111.5
	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B}) \cdots \mathrm{O}(2)$	0.98	2.46	$2.969(2)$	112.0

Symmetry codes: (i) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$

Figure 5. Packing diagram 3 shows the intermolecular hydrogen bonding along with the b axis (a) and rotated by 50 degrees along the b axis (b)

Figure 6. Average planes across the two phosphorus atoms, the carbon C 4 atom (blue), and the carbon atoms of the 2 -chloroquinoline group (red). The dihedral angle is 89.1°

2.2. Biology study

Compounds 2a-2c, 3-5, and $\mathbf{9 , 1 0}$ were tested for their antibacterial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Bacillussubtilis, Staphylococcus aureus, and Bacillus cereus), using the diffusion plate method. The $\operatorname{MIC}(\mu \mathrm{g} / \mathrm{ml}$ or $100 \%)$, values were determined for each of the pathogens. The zone of inhibition was measured in mm and recorded. Ampicillin and Kanamycin at $\mu \mathrm{g} / \mathrm{ml}$ or 100%) were
used as standards in the experiment ${ }^{27,28}$. The antibacterial evaluation of the new compounds, P -bis[(di-methylamino) phosphoryl] tetramethyl phosphonic diamide compound $\mathbf{3}$ was shown to be the most active agent against Gram-positive and Gramnegative bacteria compared to the other tested compounds (Table 3). Compound 4 and compound 10, exhibited more activity against Gram-positive (Bacillus Cereus) ${ }^{29}$. It was noted that compound $\mathbf{8}$ had no antibacterial activity.

Table 3. Antibacterial properties of compounds 2a-c, 3-5, and 8-10.

Sample		Inhibition zone diameter ($\mathrm{mm} / \mathrm{mg}$ Sample)				
		Gram-positive bacteria			Gram-negative bacteria	
		Bacillus subtilis	Staphylococcus aureus	Bacillus Cereus	Esherichia Coli	Pseudomonas aeruginosa
\#\#ت	Ampicillin	26	21	0.0	25	26
	Kanamycin	0.0	26	25	0.0	0.0
Compound 2a		0.0	0.0	0.0	0.0	0.0
Compound 3		13	15	0.0	15	16
Compound 2b		0.0	0.0	0.0	0.0	0.0
Compound 4		0.0	15	14	14	13
Compound 2c		0.0	14	0.0	12	11
Compound 5		12	14	0.0	12	11
Compound 8		0.0	0.0	0.0	0.0	0.0
Compound 9		0.0	10	10	11	10
Compound 10		0.0	14	15	12	12

Disc diameter 5 mm ; Control DMSO

3. Conclusion

We synthesized new derivatives of 2-chloroquinolin-3-carbaldehydes bearing imines group and heterocyclic rings in this work. Introducing one or two groups of $\mathrm{O}=\mathrm{P}(\mathrm{NCH} 3)_{2}$, using diaminhosphine as a reagent, may increase the biological activity. The reaction of trisaminophosphine and 2-chloro-quinolin-3-aldoxime led to the formation of, P-bis (dimethylamino) phosphoryl] amino $\}$ (2-chloro-quinolin-3-yl-)methyl]- $N, N, N^{\prime}, N^{\prime}$-tetra-methyl phosphonic diamide. Due to its particular design, it represents a new promising agent. X-Ray studies were essential to conform the suggested structure of P-bis(dimethylamino) phosphoryl] amino\} (2-chloroquinolin-3-yl-) methyl] phosphonic diamide. Also, the reactions of 2-chloroquinolin-3carbaldehydeimines with trisaminophosphine led to the formation of phosphorylphenylhydrazine, 2cyanoanilinophosphorylamidate, and N-[(2-chloro-quinolin-3-yl) $\quad N, N$-di(pyridin-3-yl) methane diamine. Furthermore, 3-(5-oxo-2-phenyl-oxazol$4(5 \mathrm{H})$ - quinolin- $2(1 \mathrm{H})$-one reacted with phosphine reagent to produce N -[(Z)-3-(dimethylamino)-3-oxo-1-(2-oxo-1,2-dihydro-quinolin-3-yl) prop-1-en- 2 $\mathrm{yl}]$ benzamide. The assigned Z structure is based on X ray analysis. P-[(2-Chloroquino-lin-3-yl) (5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) methyl] tetramethylphosphonic diamide is generated by the reaction of aminophosphine with 2-chloroquinolyl-3-methyl-1-phenyl-1H-pyrazol$5(4 \mathrm{H})$-one. The stability of dipolar intermediates in the reactions of aminophosphine plays an important role in the formation of new products.

From the antibacterial evaluation, it could be concluded that P - bis[(dimethylamino) phosphoryl] tetramethylphosphonic diamide is the most active against gram-positive and gram-negative bacteria compared to other compounds. P-[(2-oxo-1,2-dihydroquinolin-3-yl)(2-phenylhydrazinyl) methyl]-, and P-[(2-chloroquinolin-3-yl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) methyl]- phosphonic diamides, exhibited moderate activity against Gram+ve (Bacillus Cereus) specie.

4. Experimental Section

4.1. General remarks

Chemicals were purchased from Aldrich Chemical Co. and used as such without further purification. Completion of the reaction was indicated by thinlayer chromatography. The IR spectra were measured with a Bruker spectrophotometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Jeol and Bruker spectrometers $(400,500$, and $100,125 \mathrm{MHz}$, respectively) in CDCl_{3} and $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$.

4.2. Synthetic procedure

To a solution of $\mathbf{2 a - d}, \mathbf{7}$, and $9(1 \mathrm{mmol})$ in $10 \mathrm{~cm}^{3}$ DMF/ or toluene, trisdimethyl aminophosphine 1 (2 mmol) was added dropwise at room temperature with stirring, and the reaction mixture was heating in an oil bath at $108^{\circ} \mathrm{C}$ for $2-4 \mathrm{hrs}$. The reaction mixture was evaporated under reduced pressure, and the residue was applied to silica-gel column chromatography. The eluent solution (v:v) adducts 3-6, 8, and $\mathbf{1 0}$ were separated.
P-\{Bis (dimethylamino) phosphoryl] amino\} (2-chloroquinolin-3-yl) methyl]- $N, N, N^{\prime}, N^{\prime}-$ tetramethylphosphonic diamide 3.
eluent; ethyl acetate: methanol (98:5; v: v); compound 3 was obtained as crystals; 0.31 g (67\%); m..p 237$238^{\circ} \mathrm{C}$;
IR: $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1}$: (NH) 3104, (P=O) 1258, [P[(N-(Me) $\left.)_{2}\right)$ $]_{2}$] 1335, 838 ;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) d / \mathrm{ppm}: 2.12\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{P H}=9.5 \mathrm{~Hz}\right.$, $\left.\mathrm{NMe}_{2}, \mathrm{H}-3\right), 2.19\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{P H}=8.64 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 2.61$ $\left(\mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{PH}}=8.6 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 2.83\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{P H}=8.44\right.$ $\left.\mathrm{Hz}, \mathrm{NMe}_{2}\right), 5.43-5.49\left(2 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{Hp}}=15.68 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=\right.$ $7.48 \mathrm{~Hz}, \mathrm{CH}), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.64 \mathrm{~Hz}, \mathrm{ArH}), 7.75(\mathrm{t}$, $1 \mathrm{H}, J=7.08 \mathrm{~Hz}, \mathrm{ArH}), 8.89(\mathrm{~d}, 1 \mathrm{H}, J=15.02 \mathrm{~Hz})$, 7.97 (d, 1H, $J=8.60 \mathrm{~Hz}, \mathrm{ArH}$), 8.55
(s, 1H, ArH);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) ~ d / \mathrm{ppm}: 36.34\left(\mathrm{NMe}_{2}\right)$, $49.45(\mathrm{P}-\mathrm{C}-$
$\left.\mathrm{N}-\mathrm{P}, J_{\mathrm{CP}}=96 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=38 \mathrm{~Hz}\right), 128.7,128.0,128.6$,
130.7, 131.9, 134.2,137.8, 141.4, 145.0, 151.6
(C-Ar);
MS m/z: $460\left(\mathrm{M}^{+}, 5 \%\right)$;
Anal. Calcd. Mass fractions of elements, w / \% for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{P}_{2}\left(\mathrm{M}_{\mathrm{r}}=460.16\right)$ are: C 46.91 , H 6.78, Cl7.69, N18.23,P13.44; found: C 46.62, H 6.53, Cl 7.60, N 18.18,P 13.40.

$N, N, N^{\prime}, N^{\prime}$-tetramethyl-P-[(2-oxo-1,2-
 dihydroquinolin-3-yl)(2-phenylhydrazinyl) methyl]phosphonic diamide 4.

eluent; acetone: petroleum ether (30:70; v: v); compound 4 was obtained as crystals; 0.24 g (60%) m.p: $197-198^{\circ} \mathrm{C}$;

IR: $\mathrm{V}_{\mathrm{max}} / \mathrm{cm}^{-1}$: (NH) 3348, 3055, 2921, ($\mathrm{P}=\mathrm{O}$) 1258 $\left[\mathrm{P}\left[\left(\mathrm{N}(\mathrm{Me})_{2}\right)\right]_{2}\right] 1325,886$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm}: 2.82\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J=10.0 \mathrm{~Hz}\right.$, $\left.\mathrm{NMe}_{2}, \mathrm{P}-\mathrm{H}\right), 3.02\left(\mathrm{~d}, 6 \mathrm{H}, J_{3}=10.0 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 4.99-$ $4.95\left(\mathrm{~d}, 1 \mathrm{H}, J_{2}=14.0 \mathrm{~Hz}, \mathrm{CH}\right), 6.60(\mathrm{~d}, 2 \mathrm{H}, J=10.0$ $\mathrm{Hz}, \mathrm{ArH}), 6.73(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{ArH}), 7.11(\mathrm{~d}, 2 \mathrm{H}$, $J=7.60 \mathrm{~Hz}, \mathrm{ArH}), 7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{~m}, 1 \mathrm{H}$, ArH), 8.49(s, 1H, ArH), 9.56 (s, 2H, 2NH), 9.72(s, 1H, NH);
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm}: 36.3\left(\mathrm{NMe}_{2}\right), 50.0\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $62.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{P}), 113.3,120.5,125.1,128.4,129.1$, 130.6, 133.0, 137.5, 144.7, 147.7 (C-Ar);

MS $m / z: 400\left(\mathrm{M}^{+}+1,5 \%\right)$,
Anal. Calcd. Mass fractions of elements, w/\% for $\mathrm{C}_{20} \mathrm{H}_{26} \quad \mathrm{~N}_{5} \quad \mathrm{O}_{2} \mathrm{P} \quad\left(\mathrm{M}_{\mathrm{r}}=399.42\right)$ are: C60.14, H6.56, N17.53,P7.75; found: C60.20, H6.46, N 17.42 , P7.71.

P-[(2-chloroquinolin-3-yl)(2-cyanoanilino)

 methyl]-N,N,N', N'-tetramethylphosphonic diamide 5.eluent; acetone: methanol (98:5; v: v); compound 5 was obtained as crystals; 0.23 g (55%) m.p: 242$243{ }^{\circ} \mathrm{C}$;
IR: $\quad \mathrm{V}_{\max } / \mathrm{cm}^{-1}: \quad(\mathrm{NH}) \quad 2165,(\mathrm{P}=\mathrm{O}) 1233$, $\mathrm{P}\left[\left(\mathrm{N}-(\mathrm{Me})_{2}\right)\right]_{2} 1335,850$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm} 2.25(\mathrm{~d}, 6 \mathrm{H}, J=11.6 \mathrm{~Hz}$, PNMe_{2}), $2.71\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, \mathrm{PNMe}_{2}\right), 4.67,4.62$ $\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{J}_{\mathrm{HH}}=12.40, \mathrm{~J}_{\mathrm{PH}}=8.80 \mathrm{~Hz}, \quad \mathrm{CH}_{2}-\right.$ phosphamidate), $4.75,4.70\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}}=12.80\right.$, $J_{\mathrm{PH}}=8.80 \mathrm{~Hz}, \mathrm{CH}_{2}$ phosphamidate $), 6.75(\mathrm{~d}, 2 \mathrm{H}$,
$J=9.20 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.80 \mathrm{~Hz}, \mathrm{Ar}-$ H), $7.67(\mathrm{t}, 1 \mathrm{H}, J=11.60 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.81(\mathrm{t}, 1 \mathrm{H}, J=$ $8.40 \mathrm{~Hz}), 8.16-8.12$ (m,2H,Ar-H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm}: 36.1,52.6\left(\mathrm{~d},{ }^{2} J=30.0 \mathrm{~Hz}\right.$, C-N-P), 115.3, 120.5,122.8,124.5, 125.1, 126.1, $128.4,129.1,130.6,132.6,137.2,141.4,144.3,150.9$, 151.6;

MS m/z : $427\left(\mathrm{M}^{+}, 100\right)$;
Anal. Calcd Mass fractions of elements, w / \% for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{5} \mathrm{OP}\left(\mathrm{M}_{\mathrm{r}}=427.86\right.$): C 58.95 , H $5.42, \mathrm{Cl}$ $8.29, \mathrm{~N} 16.37, \mathrm{P} 7.24$; found: C 58.78 , H 5.30 , Cl 8.15,N 16.30,P 7.20.

1-(2-chloroquinolin-3-yl)-N-[(2-

chloroquinolin-3-yl)methyl]-N, \mathbf{N}^{\prime}-di(pyridin-3yl)methanediamine 6.
eluent; ethyl acetate: petroleum ether ($60: 40$; v: v); compound 6 was obtained as crystals; 0.31 g (70%) m.p: $245-246^{\circ} \mathrm{C}$;

IR: $\mathrm{V}_{\max } / \mathrm{cm}^{-1}$: (NH) 3055;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \quad d / \mathrm{ppm} 4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.85$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 4.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $7.69-7.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.69-7.67(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, ArH),7.89-7.85 (m,4H, ArH), 8.04-8.01 (m, 3H, ArH), 8.23(s, 2H, ArH);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm}: 58.5\left(\mathrm{CH}_{2}\right), 59.8(\mathrm{CH})$, $125.6,126.0,127.2,127.3,128.2,134.6,136.7$, 147.0,147.8, 149.1, 162.7.

MS $m / z: 535\left(\mathrm{M}^{+}-1,40 \%\right)$.
Anal. Calcd. Mass fractions of elements, w/\% for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{6}\left(\mathrm{M}_{\mathrm{r}}=536.15\right)$ are: C 67.04, H 4.13,
Cl 13.19,N 16.64; Found: C 67.12, H 4.06, Cl 13.22 , N 16.58.
$\mathrm{N}-[(\mathbf{Z})$-3-(dimethylamino)-3-oxo-1-(2-oxo-1,2-dihydroquinolin-3-yl)prop-1-en-2-yl]benzamide 8. eluent; ethylacetae : petroleum ether (80:20; v : v); compound 8 was obtained as crystals; m.p 280$281^{\circ} \mathrm{C}$.;
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) d / \mathrm{ppm}: 3.13,3.09(2 \mathrm{~s}, 6 \mathrm{H}$, NMe_{2}), $4.91(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.20-$ 7.24 (m, 1H, ArH), 7.40 - 7.46 (m, 3H, Ar-H), 7.48$7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}), 8.24$ (d, $2 \mathrm{H}, J=15.02 \mathrm{~Hz}$), $13.72,13.58(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) d / \mathrm{ppm}: 34.7\left(\mathrm{NMe}_{2}\right), 110.4$, 115.3, 120.6, 122.8, 123.5, 128.0, 128.6, 130.7,132.3, 134.5, 135.3, 138.2, 141.4, (C-Ar), 162.8, 163.4, 168.8 (C =O);

MS m/z: $361\left(\mathrm{M}^{+}, 20 \%\right)$.
Anal. Calcd Mass fractions of elements for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Cl}_{2}$ $\mathrm{N}_{6}(\mathrm{Mr}=361.14)$ are: $\mathrm{C} 7.04, \mathrm{H} 4.13, \mathrm{Cl} 13.19$,
N 16.64; found: C 7.12, H 4.06, Cl 13.22, N16.58.
P-[(2-chloroquinolin-3-yl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) methyl]$\mathbf{N}, \mathbf{N}, \mathbf{N}$ ', \mathbf{N}^{\prime}-tetramethyl-phosphonic diamide 10. eluent; acetone: petroleum ether ($60: 40$; v: v); compound 10 was obtained as crystals; 0.22 g (45%) m.p : $234-235^{\circ} \mathrm{C}$;

IR: $\quad \mathrm{V}_{\mathrm{max}} / \mathrm{cm}^{-1} \quad: \quad(\mathrm{OH}) \quad 2973, \quad(\mathrm{P}=\mathrm{O}) 1258$, $\left[\mathrm{P}\left[\left(\mathrm{N}-(\mathrm{Me})_{2}\right)\right]_{2}\right] \quad 1345,817$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm}: 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37$
(d, $\left.6 \mathrm{H}, J_{l, 3}=9.20 \mathrm{~Hz}, \mathrm{NMe}_{2}, \mathrm{H}-3\right), 2.83(\mathrm{~d}, 6 \mathrm{H}$, $\left.J_{l, 3}=9.20 \mathrm{~Hz}, \mathrm{Me}_{2}\right), 3.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=14.5 \mathrm{~Hz}\right.$, CH,H-2), 7.48-7.30(m, 4H, ArH), 7.53,7.55 (2d, 4H, $J=8.40 \mathrm{~Hz}, \mathrm{ArH}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.40 \mathrm{~Hz}, \mathrm{ArH}), 9.68$ (1s, 1H, OH);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) d / \mathrm{ppm}: 14.8\left(\mathrm{CH}_{3}\right), 36.3 \quad\left(\mathrm{~d}, J_{l, 2}\right.$ $\left.=37.5 \mathrm{~Hz}, \mathrm{NMe}_{2}, \mathrm{C}-2\right), 49.0\left(\mathrm{~d}, J_{l}=73.75 \mathrm{~Hz}, \mathrm{C}-1\right)$, 119.5, 121.8, 123.5,123.8, 124.8, 126.4, 127.5, 127.7, 129.0,134.6, 136.2, 145.7, 158.7 (C-Ar); MS $m / z: 483\left(\mathrm{M}^{+}, 22 \%\right)$.
Anal. Calcd. Mass fractions of elements, w/\% for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{P}\left(\mathrm{M}_{\mathrm{r}}=483.15\right)$ are: C59.57, H5.62, Cl 7.33, N14.47, P 6.40; found: C 59. 40, H $5.57, \mathrm{Cl}$ 7.30,N 14.41, P 6.36.

Acknowledgments

The authors thank XRD1 staff at Elettra Synchrotron for the in-house measurements.

Funding

The National Research Centre, Egypt, supported this work.

References

1- H. U. Okoroiwu, I. A. Iwara, Dichlorvos toxicity: a public health perspective, Interdiscip Toxicol, 2018, 11, 129-37.
2- W. Andrew, Pharmaceutical Manufacturing Encyclopedia, 3rd ed, Norwish NY: Elsevier, 2007, 1, 3846.
3- Q. Yao, L. Reng, M. Ran, J. He, D. Xiang, Review on the structures of phosphoruscontaining drugs used in clinical practice, Medicine in drug discovery, 2019, 41, 139-146.
4- J. B. Rodriguez, C. Gallo-Rodriguez, The role of the phosphorus atom in drug design, Chem. Med. Chem., 2019, 14,190-226.
5- Y. Hanxiao, H. Yang, S. Enxue, Tang Wenjun, Development and clinical application of phosphorus-containing drugs, Medicine in Drug Discovery, 2020, 8, 100063.
6- S. Pol, M. Corouge, A. Vallet-Pichard, Daclatasvir- sofosbuvir combination therapy with or without ribavirin for hepatitis C virus infection: from the clinical trials to real life, Medical Devices: Evidence and Research, 2016, 8, 21-26.
7- M. Agostini, E. Andres, A. Sims, R. Graham, T. Sheahan, X. Lu, Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease, American Society Microbiology, 2018, 9, e00221-18.
8- J. S. Dhau, A. Singh, A. Singh, B. S. Sooch, A Study on the Antioxidant Activity of Pyridylselenium Compounds and their Slow Release from Poly(acrylamide) Hydrogels, Phosphorus, Sulfur, and Silicon and the Related Elements, 2014, 189, 687-699.

9- A. Singh, A. Kaushik, Ja. S. Dhau, R. Kumar, Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands, Coordination Chemistry Reviews, 2022, 450, 214254.
10-M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organishen Chemic, Georg Thieme Verlag, Stuttgard, 1991.
$11-\mathrm{M}$. Arsanious, Reactions of Trisdialkylaminophosphines with Acrylohydrazide and Imidazolinone Derivatives for the Synthesis of New Organophosphorus Derivatives, Synthetic Communications, 2009, 39, 1626-1639.
12-M. Arsanious, S. S. Maigali, Isatin Imines in the Reaction with Iminophosphine: X-Ray Structure of Phospholane Derivatives, Synthetic Communications, 2014, 44, 202-214.
13-E. S. Batyeva, V. A. Al' fonsov, M. Z. Kaufman, A. N. Pudovik, Isomerization of β-propiolactone in the presence of amides of phosphorus acids, Russian Chemical Bulletin, 1976, 25,1166.
14-A. Lausi, M. Polentarutti, S. Onesti, J. Plaisier, E. Busetto, G. Bais, L. Barba, A. Cassetta, G. Campi, D. Lamba, A. Pifferi, S. Mande, D. Sarma, S. Sharma, G. Paolucci, Status of the crystallography beamlines at Elettra, European Physical Journal Plus, 2015,43, 1-8.
15-W. Kabsch, XDS, Acta Crystallography Sect. D, 2010, 66, 125-132.
16-G. Sheldrick, SHELXT-Integrated Space-Group and Crystal-Structure Determination, Acta Crystallographica Sect., 2015, A71, 3-8.
17-C. Macrae, J. Bruno, J. Chisholm, P. Edgington, P. McCabe, E. Pidcock, L. Rodriguez- Monge, R. Taylor, J van de Streek, P. Wood, new features for the visualization and investigation of crystal structures, Journal of Applied Crystallography, 2008, 41, 466-470.
18-M. Arsanious, S. Darwish, El-S Shalaby, D. ElGhwas, Synthesis, X-ray, DFT studies and antimicrobial properties of new quinolinylphosphonates, Letters in Organic Chemistry, 2019, 8, 668.
19- J. Son, S. Tamang, J. Hoefelmeyer, Crystal structure of bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide, Acta Crystallographica Sect. E, 2015, 71, 1114-1116.
20-S. J. Tu, Y. Zhang, R. H. Jia, 13-(4-Fluorophen-yl)-12H-benzo[f] indeno[$1,2-b]$ quinolin-12-one, Acta Crystallographica Sect. E, 2006, 62, o3930- o3931.
21-A. Asiri, A. Al-Youbi, H. Faidallah, SW Ng, 2-Amino-4-(4-chlorophenyl)-5,6-dihydrobenzo [h] quinoline-3-carbonitrile-3-amino-1-(4-chlorophenyl)-9,10-dihydrophenanthrene-2,4dicarbonitrile (1/4), Acta Crystallographica Sect. E, 2011, 67, o2873-o2874.
22-S. J. Tu, Y. Zhang, R. H. Jia, 7-(4-Fluorophenyl)$8 H$-benzo[h]indeno[1,2-b]quinolin-8-one, Acta Crystallographica Sect. E, 2006, 62, o3928o3929.

23-A. Rajapakse, R. Hillebrand, S. Lewis, Z. Parsons, C. Barnes, K. Gates, Crystal structure of N -(quinolin-6-yl) hydroxylamine, Acta Crystallographica Sect. E, 2014, 70, 322-324.
24-I. Gama, M. Souza, J. Wardell, E. Tiekink, 7-Chloro-4-(2-hydroxyethylamino)quinolin-1ium chloride E, Acta Crystallographica Sect. E, 2014, 70, o385- o386.
25- A. Singh, S. N.Maximoff, P. Brandão, J. S.Dhau, Crystal structures of bis (2-methoxy-3-pyridyl) diselenide and bis (2-methoxy-3-pyridyl) ditelluride: an investigation by X-ray crystallography and DFT calculations, Journal of Molecular Structure, 2021, 1240, 130568.
26-J. S. Dhau, A. Singh, A. Singh, B. S. Sooch, P. Brandão, V. Félix, Synthesis and antibacterial activity of pyridylselenium compounds: Selfassembly of bis(3-bromo-2-pyridyl)diselenide via intermolecular secondary and $\pi \cdots \pi$ stacking
interactions, Journal of Organometallic Chemistry, 2014, 766, 57-66.
27-D. N. Muanza, B. W. Kim, K. L. Euler, L. Williams, Antibacterial and Antifungal Activities of Nine Medicinal Plants from Zaire, International Journal Pharmacognosy, 1994, 32, 337-345.
28-O. N. Irobi, M. Moo-Young, W., Anderson, Synthesis and Biological Evaluation of Novel 6-(3-(4,5-Dihydro-1,5-diphenyl-1H-pyrazol-3yl)phenylamino) Pyridazin-3(2H)-one Derivatives, International Journal Pharmacognosy, 1996, 34, 87-90.
29-A. H. Kategaonkar, R. U. Pokalwar, S. S. Sonar, V. U. Gawali, M. S. Shingare Synthesis, in vitro antibacterial and antifungal evaluations of new α hydroxyphosphonate and new α acetoxyphosphonate derivatives of tetrazolo [1,5-a] quinoline, European Journal of Medicinal Chemistry, 2010, 45, 1128-1132.

