First total synthesis of $(4 R, 5 R, 11 S)$ and $(4 R, 5 R, 11 R)$-isocladospolide B

María González ${ }^{1}$, Zoila Gándara ${ }^{1}$, Matar Seck ${ }^{\mathbf{2}}$, Generosa Gómez ${ }^{1}$ and Yagamare Fall ${ }^{1, *}$
${ }^{1}$ Departamento de Química Orgánica, Facultad de Química and Instituto de Investigación Biomedica (IBI), University of Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
${ }^{2}$ Departement de Chimie, Faculté de Medecine, de Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.

Abstract

The two enantiomers of natural products ($4 S, 5 S, 11 R$)-and ($4 S, 5 S, 11 S$)-iso-cladospolide B have been synthesized and their structures unambiguously confirmed by X-ray crystallographic analysis. Key steps of the synthesis include the use of tri-O-acetyl-D-glucal as precursor for a chiral furan diol which, after side chain transformation, underwent singlet oxygen oxidation to afford the target butenolides.

Keywords: Natural products; Singlet oxygen; Butenolide; Total synthesis; Lactones.

Introduction

$(4 S, 5 S, 11 R)$-and $(4 S, 5 S, 11 S)$-iso-cladospolide B and cladospolides A-D (Figure 1) are a family of fungal secondary metabolites which were isolated from marine fungi or from soil fungus ${ }^{1}$. While cladospolides A-D have macrolactonic structures, $(4 S, 5 S, 11 R)$-and $(4 S, 5 S$, $11 S$)-iso-cladospolide B possess a butenolide moiety and were isolated from Red sea sponge Cladosporium sp. and also from fermentation of the marine fungal species 196S2152. The promising biological profiles of the iso-cladospolide family of natural products have attracted the interest of the synthetic community. ${ }^{3}$

Results and Discussion

We recently reported the synthesis of natural ($4 S, 5 S, 11 R$)-iso-cladospolide B(5) and ($4 S$, $5 S$, 11S)-iso-cladospolide $\mathrm{B}(\mathbf{6})^{3 \mathrm{~b}}$ from L-malic acid, confirming unambiguously their structures by X-ray crystallographic analysis. As part of our ongoing program focusing on the use of readily available chiral reagent tri-O-acetyl-D-glucal (9) for the synthesis of natural products ${ }^{4}$, we now wish to report the synthesis of $(4 R, 5 R, 11 S)$-iso-cladospolide $\mathrm{B}(7)$ and $(4 R, 5 R, 11 R)$-iso-cladospolide $\mathrm{B}(\mathbf{8})$ using this reagent. Compounds $\mathbf{7}$ and $\mathbf{8}$ are the enantiomers of $\mathbf{5}$ and $\mathbf{6}$ respectively. Our retrosynthetic basis is outlined in Scheme 1.

[^0]
cladospolide A (1)

cladospolide B(2)

cladospolide C(3)

cladospolide D (4)

(4S, 5S, 11R)-iso-cladospolide B (5)

(4R, 5R, 11S)-iso-cladospolide B (7)

(4S, 5S, 11S)-iso-cladospolide B (6)

($4 R, 5 R, 11 R$)-iso-cladospolide B (8)

Figure 1. Structures of cladospolides A-D, $(4 S, 5 S, 11 R)$ - and $(4 S, 5 S, 11 S)$-iso- cladospolide B and their respective enantiomers $(4 R, 5 R, 11 S)$ - and $(4 R, 5 R, 11 R)$-iso- cladospolide B .

(4R, 5R, $11 S$)-iso-cladospolide B (7)

13

11

10
Scheme 1. Retrosynthetic analysis of ($4 R, 5 R, 11 S$)-iso-cladospolide B (7).
We anticipated that furan $\mathbf{1 1}$ could be obtained from diol 10, easily available from tri-O-acetyl-D-glucal (9) using a well documented methodology we already employed for the synthesis of chiral compounds ${ }^{5}$. Furan 11, on treatment with epoxide $\mathbf{1 2}$ would then lead to furan 13 containing the desired iso-cladospolide side chain, hence precursor of 7. Accordingly target compound 7 was prepared as outlined in Scheme 2.

Scheme 2. Synthesis of (4R, 5R, 11S)-iso-cladospolide B (7)
Chiral diol 10 was easily prepared from tri-O-acetyl-D-glucal (9) ${ }^{5}$ and the hydroxyl groups were protected as tert-butyldimethylsilyl ethers affording 80% yield of $\mathbf{1 4}$. Selective
deprotection of the primary hydroxyl group gave alcohol 15 in 70% yield. TEMPO/ Bis(acetoxy)iodobenzene (BAIB) oxidation of $\mathbf{1 5}$ followed by Wittig olefination with commercially available ylide $\mathbf{1 6}$ afforded a mixture of α, β-unsaturated esters 17 (66%, 2 steps). $\mathbf{1 7}$ was subsequently hydrogenated (99%) and reduced by DIBAL to provide 83% of aldehyde 19. Aldehyde 19 underwent an Ohira-Bestmann homologation ${ }^{6}$ to give alkyne $\mathbf{1 1}$ in 87% yield. Treatment of epoxide $\mathbf{1 2}$ with alkyne $\mathbf{1 1}$ in the presence of n-butyllithium and $\mathrm{BF}_{3}-\mathrm{OEt}_{3}$ in tetrahydrofuran gave the alkynol 21 in 97% yield. Protection of the hydroxyl group of 21 followed by catalytic hydrogenation afforded furan $\mathbf{1 3}$ in 80% overall yield. Singlet oxygen oxidation of furan $\mathbf{1 3}^{3 \mathrm{~b}, 5,7}$ afforded target compound $\mathbf{7}$ in 78% yield. The absolute configuration of ($4 R, 5 R, 11 S$)-iso-cladospolide $\mathrm{B}(7)$ was confirmed unambiguously as that shown in Figure 2, by X-ray crystallographic analysis of the crystals obtained by recrystallization from hexane. ${ }^{8}$

Figure 2. X-ray structure (ORTEP) of $(4 R, 5 R, 11 S)$-iso.cladospolide B (7)
Alkyne 11 was transformed into ($4 R, 5 R, 11 R$)-iso-cladospolide B (8) using epoxide 23 and following a similar sequence of reactions to that used to prepare its diastereoisomer 7 (Scheme 3).

Scheme 3. Synthesis of ($4 R, 5 R, 11 R$)-iso-cladospolide B (8)

Conclusion

In conclusion we carried out the synthesis of $(4 R, 5 R, 11 S)$-and $(4 R, 5 R, 11 R)$-isocladospolide B from cheap and commercially available tri-O-acetyl-D-glucal. By X-ray crystallographic analysis we unambiguously confirmed the structure of $(4 R, 5 R, 11 S)$-isocladospolide. The synthesized compounds are enantiomers of natural products ($4 S, 5 S, 11 R$)and ($4 S, 5 S, 11 S$)-iso-cladospolide B and might be good candidates for biological evaluations. To the best of our knowledge the synthesis and full structure characterization of ent-5 and ent- $\mathbf{6}$ is described here for the first time.

Acknowledgements

This work was supported financially by the Xunta de Galicia (CN 2012/184). The work of the NMR, SC-XRD and MS divisions of the research support services of the University of Vigo (CACTI) is also gratefully acknowledged. Z.G. thanks the Xunta de Galicia for an Angeles Alvariño contract and M. G. the University of Vigo for Ph D fellowships. M.S. thanks the University Cheikh Anta Diop (Dakar) for financial support for a research stay at the University of Vigo.

Experimental Section

General Procedures

Solvents were purified and dried by standard procedures before use. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker ARX-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100.61 MHz for ${ }^{13} \mathrm{C}$ NMR) using TMS as internal standard (Chemical shifts in δ values, J in Hz). Flash chromatography (FC) was performed on silica gel (Merck 60, 230-400 mesh); analytical TLC was performed on plates precoated with silica gel (Merck $60 \mathrm{~F} 254,0.25 \mathrm{~mm}$); mass spectra (FAB, EI) were recorded using FISONS VG and electron spray ionization (ESI-MS) spectroscopy was recorded using Bruker FTMS APEXIII. IR spectra were recorded with a JASCO FT/I $(R)-6100$ spectrophotometer.

(1'R)-2-[1', 2'-bis(tert-butyldimethylsilyloxy)ethyl]furan (14).

To a solution of diol $\mathbf{1 0}(891 \mathrm{mg}, 6.95 \mathrm{mmol})$ in DMF (10 mL) were added imidazole ($2.3 \mathrm{~g}, 35 \mathrm{mmol}$), DMAP (c.c.) and TBSCl ($2.3 \mathrm{~g}, 15.3 \mathrm{mmol}$). Then, the mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 20 h . EtOAc was added $(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layer was dried, filtered and concentrated. The residue was chromatographed on silica gel using 1% EtOAc / Hexane affording 14 as a yellowish oil; Yield: $1.9 \mathrm{~g}(80 \%) ; \mathrm{R}_{F}=0.85$ $(20 \% \mathrm{EtOAc} /$ Hexane $) ;[\alpha]_{D}^{23}+45.09$ (c 1.0, CHCl_{3}). IR (NaCl , neat): 2958, 2926, 2857, 1468, $1257 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5) ; 6.33(\mathrm{dd}, \mathrm{J}=1.8$ $\mathrm{Hz}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) ; 6.25(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) ; 4.80-4.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right) ; 3.84-3.80$ (m, $2 \mathrm{H}, \mathrm{H}-2$ '); 0.90 (s, $9 \mathrm{H},{ }^{\text {tBu-TBS }}$); 0.88 ($\mathrm{s}, 9 \mathrm{H},{ }^{\text {tBu-TBS); }} 0.05$ (m, $12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.21$ (C-2); $142.45(\mathrm{CH}-5) ; 110.02(\mathrm{CH}-3) ; 106.88$ (CH-4); $70.07\left(\mathrm{CH}-1{ }^{\prime}\right) ; 67.02\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 25.91,25.80\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 18.29,18.26\left(\mathrm{C}^{-} \mathrm{Bu}-\right.$ TBS); -4.87, -5.06, -5.42, $-5.52\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z(\%)=381.20\left([\mathrm{M}+\mathrm{Na}+2]^{+}, 9\right)$; $380.21 \quad\left([\mathrm{M}+\mathrm{Na}+1]^{+}, \quad 29\right) ; \quad 379.20 \quad\left([\mathrm{M}+\mathrm{Na}]^{+}, \quad 100\right) ; \quad 374.25$ (10); 156.12 (6). HRMS (ESI ${ }^{+}$):calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NaO}_{3} \mathrm{Si}_{2}$: 379.2095; found: 379.2091.
(2R)-2-(tert-butyldimethylsilyloxy)-2-(2'-furyl)ethanol (15).
To a solution of compound $\mathbf{1 4}(1.07 \mathrm{~g}, 3.01 \mathrm{mmol})$ in THF (18 mL) and pyridine (2.0 mL) cooled to $0{ }^{\circ} \mathrm{C}$ was added dropwise, a solution $30 \%(\mathrm{v} / \mathrm{v}) \mathrm{HF}$ in pyridine $(1.0 \mathrm{~mL})$ and the reaction was stirred for 4 h at the same conditions. Then, EtOAc (38 mL) and sat. aq $\mathrm{NaHCO}_{3}(38 \mathrm{~mL})$ were added and the mixture was stirred for 10 min . The reaction was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), dried and the solvent was removed in vacuo. The residue was chromatographed on silica gel using 1% EtOAc / Hexane $\rightarrow 50 \%$ EtOAc / Hexane to afford alcohol 15 as a colourless oil. Yield: $330 \mathrm{mg}(45 \%) ; \mathrm{R}_{F}=0.55$ ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$); $[\alpha]_{D}^{24}+61.42\left(c \quad 10.4, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{NaCl}\right.$, neat): 3430, 2952, 2929, 2848, 1470, $1250 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36$ (dd, J $=0.8 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '); 6.33 (dd, $\left.\mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right) ; 6.27\left(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 4.79(\mathrm{dd}, \mathrm{J}=4.5 \mathrm{~Hz}$, $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$); 3.80-3.70 (m, $2 \mathrm{H}, \mathrm{H}-1$); 2.36 (s broad, $1 \mathrm{H},-\mathrm{OH}$); $0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}^{\mathrm{t}}\right.$ TBS); 0.09 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); -0.04 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.12\left(\mathrm{C}-2^{\prime}\right) ; 141.91\left(\mathrm{CH}-5^{\prime}\right) ; 110.21\left(\mathrm{CH}-3^{\prime}\right) ; 107.22\left(\mathrm{CH}-4^{\prime}\right) ; 69.27(\mathrm{CH}-2) ; 65.82$ $\left(\mathrm{CH}_{2}-1\right) ; 25.76\left(\mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}-\mathrm{TBS}\right) ; 18.17$ (C-'Bu-TBS); -4.98, $-5.14\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$: $\mathrm{m} / \mathrm{z}(\%)=266.12\left([\mathrm{M}+\mathrm{Na}+1]^{+}, 12\right) ; 265.12\left([\mathrm{M}+\mathrm{Na}]^{+}, 56\right) ; 262.11(18) ; 196.11$ (100); 185.05 (28). HRMS (ESI^{+}): calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{Si}: 265.1230$; found: 265.1235.

(4R)-Ethyl 4-(tert-butyldimethylsilyloxy)-4-(2'-furyl)but-2-enoate (17).

To a solution of alcohol 15 ($366 \mathrm{mg}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, were added BAIB ($560 \mathrm{mg}, 1.73 \mathrm{mmol}$) and TEMPO (catalytic amount). The reaction was stirred at r.t. for 6 h . Then, (Ethoxycarbonylmethylen)-triphenylphosphoran 16 ($788 \mathrm{mg}, 2.26 \mathrm{mmol}$) was added and the reaction was stirred at r.t. for 23 h . The solvent was removed in vacuo and the residue was dissolved in EtOAc (10 mL). The organic layer was washed with $\mathrm{aqNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 15 \%$ $(3 \times 10 \mathrm{~mL})$, then with sat. aq $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$ and with brine $(3 \times 10 \mathrm{~mL})$. The organic layer was dried and the solvent was removed in vacuo, the residue was chromatographed on silica gel using 1\% EtOAc / Hexane $\rightarrow 10 \%$ EtOAc / Hexane to afford 17, as a brown oil. Yield: $307 \mathrm{mg},(66 \%) ; \mathrm{R}_{F}=0.91(20 \% \mathrm{EtOAc} /$ Hexane $) ;[\alpha]_{D}^{23}+20.83\left(c 4.93, \mathrm{CHCl}_{3}\right)$. IR (NaCl , neat): 2952, 2916, 2852, 1794, 1716, $1457 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.38-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ '); $7.06(\mathrm{dd}, \mathrm{J}=4.2 \mathrm{~Hz}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) ; 6.62-6.14(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-3^{\prime}, 4^{\prime}$ and 3); 5.82 (d, J = 11,4 Hz, 1 H, H-2); 5.39 (dd, J = 1.7 Hz, J = $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$); $4.22\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right) ; 1.30\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right) ; 0.91$ and $0.69\left(2 \mathrm{~s}, 9 \mathrm{H}, \mathrm{H}^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right)$; 0.10-0.004 (m, $12 \mathrm{H}, \mathrm{CH}_{3}$-TBS). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.47$, $165.62(\mathrm{C}=\mathrm{O})$; 154.76, 153.69 (C-2'); 148.17, 146.19 (CH-3); 142.29, 142.16 (CH-5'); 120.81, 118.96 (CH-2); 110.35, 110, 13 (CH-3'); 107.13, 106.47 (CH-4'); 67.63, 64,29 (CH-4); 60.46, 60.29 $\left(-\mathrm{CH}_{2} \mathrm{O}-\right) ; 25.74\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 18.29,18.24\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 14.24,14.19\left(\mathrm{CH}_{3}-\right) ;-4.98$, -4.91, -5.11 (CH_{3}-TBS). MS (ESI ${ }^{+}$): $m / z(\%)=391.29$ (13); 365.14 (17); 243.14 (14); 196.12 (100). HRMS (ESI ${ }^{+}$:calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}: 310.1600$; found: 310.1607.

Ethyl (4R)-4-(tert-butyldimethylsilyloxy)-4-(2'-furyl)butanoate (18).

To a solution of alkene $17(503 \mathrm{mg}, 1.62 \mathrm{mmol})$ in hexane (10 mL) was added $\mathrm{Pd} / \mathrm{C} 5 \%$ catalyst (71 mg). The mixture was stirred in H_{2} atmosphere at r.t. for 1 h . After filtration, the filtrate was evaporated to afford ester $\mathbf{1 8}$ as a yellow oil. Yield: $506 \mathrm{mg},(99 \%) ; \mathrm{R}_{F}=0.75$ ($20 \% \mathrm{EtOAc} /$ Hexane); $[\alpha]_{D}^{22}+31.59$ (c 1.0, CHCl_{3}). IR (NaCl , neat): 2955, 2932, 2857, 1735, $1467 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right) ; 6.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~s}) ; 6.08$ (d, J = $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '); 4.69 (m, $1 \mathrm{H}, \mathrm{H}-4$); $4.00\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right) ; 2.26$ (m, $2 \mathrm{H}, \mathrm{H}-2$); 2.01 (m, $2 \mathrm{H}, \mathrm{H}-3$); 1.13 (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); 0.77 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$); -
0.05 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); -0.18 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.09$ (C=O); 156.32 (C-2'); 141.29 (CH-5'); 109.86 (CH-3'); 105.93 (CH-4'); 67.22 (CH-4); 60.03 ($\left.-\mathrm{CH}_{2} \mathrm{O}-\right)$; 31.71, $29.69\left(\mathrm{CH}_{2}-3\right.$ and 2); $25.60\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{H}} \mathrm{Bu}-\mathrm{TBS}\right) ; 17.98\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 14.05$ $\left(\mathrm{CH}_{3}-\right) ;-5.20,-5.42\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z(\%)=335.16\left([\mathrm{M}+\mathrm{Na}]^{+}, 31\right) ; 317.21$ (39); 312.16 ([M] ${ }^{+}$, 3); 196.11 (83); 185.11 (22); 181.08 (100); 153.05 (40). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}$: 335.1649; found: 335.1661.

(4R)-4-(tert-butyldimethylsilyloxy)-4-(2'-furyl)butan-1-al (19).

To a solution of $\mathbf{1 8}(530 \mathrm{mg}, 1.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$ was added, dropwise, Dibal-H 1M in hexane ($2.0 \mathrm{~mL}, 2.03 \mathrm{mmol}$) and the reaction was stirred for 1 h in the same conditions. Then, ${ }^{\mathrm{t}} \mathrm{BuOMe}(2.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(140 \mu \mathrm{~L})$ were added and the mixture was stirred until the formation a white gel. $\mathrm{H}_{2} \mathrm{O}(140 \mu \mathrm{~L})$ and aqNaOH $4 \mathrm{~N}(140 \mu \mathrm{~L})$ were added and the mixture was stirred until the formation a white solid. The solvent was removed in vacuo to give a residue which was chromatographed on silica gel using $1 \% \mathrm{EtOAc} /$ Hexane $\rightarrow 5 \%$ EtOAc / Hexane affording aldehyde 19 as a colourless oil. Yield: 378 mg , $(83 \%) ; \mathrm{R}_{F}=0.77$ ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$); $[\alpha]_{D}^{22}+68.32$ (c 1.0, CHCl_{3}). IR (NaCl , neat): 2955, 2929, 2857, 1723, $1467 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.77$ (t, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$); 7.36 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$); 6.33 (dd, J = $1.8 \mathrm{~Hz}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$); $6.21(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-3'); 4.81 (m, 1 H, H-4); 2.52 (m, 2 H, H-2); 2.14 (m, $2 \mathrm{H}, \mathrm{H}-3$); 0.89 (s, $9 \mathrm{H},{ }^{\mathrm{t} B u-T B S) ; ~}$ 0.06 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); -0.06 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.31$ ($\mathrm{HC}=\mathrm{O}$); 156.18 (C-2'); 141.54 (CH-5'); 110.08 (CH-4'); 106.30 (CH-3'); 67.47 (CH-4); 39.60, $29.41\left(\mathrm{CH}_{2}-2\right.$ and 3); $25.76\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}-\mathrm{TBS}\right) ; 18.16$ (C-'Bu-TBS); -5.02, -5.18 $\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z(\%)=291.13\left([\mathrm{M}+\mathrm{Na}]^{+}, 1.6\right) ; 267.14\left([\mathrm{M}-1]^{+}, 4\right) ; 238.16$ (11); 196.11 (100). HRMS (ESI^{+}): calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}$: 267.1411; found: 267.1408 .

(5R)-5-(tert-butyldimethylsilyloxy)-5-(2'-furyl)pent-1-yne (11).

To a solution of aldehyde $\mathbf{1 9}(378 \mathrm{mg}, 1.41 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ were added methyl 2-diazo-2-(dimethoxyphosphoryl)acetate 22 ($1.94 \mathrm{~g}, 14.08 \mathrm{mmol}$) in MeOH (10 $\mathrm{mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.93 \mathrm{~g}, 14.08 \mathrm{mmol})$. The reaction was stirred to r.t. for 3days. Then, sat. $\mathrm{Aq} \mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layers were dried, and concentrated. The residue was chromatographed on silica gel using 1% EtOAc / Hexane to afford alkyne 11 as a yellow oil. Yield: $323 \mathrm{mg},(87 \%) ; \mathrm{R}_{F}=0.84$ (20% EtOAc/Hexane); $[\alpha]_{D}^{23}+84.15$ (c 0.46, CHCl_{3}). IR (NaCl , neat): 3312, 2956, 2929, 2857, $1472,1256 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ; 6.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$; 6.21 (d, J = $=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$); 4.86 (dd, J = $4.8 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$); 2.35 (m, 1 H , $\mathrm{H}-3$); 2.24 (m, $1 \mathrm{H}, \mathrm{H}-3$); 2.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$); 1.96 (m, $2 \mathrm{H}, \mathrm{H}-4$ and 1); 0.89 ($\mathrm{s}, 9 \mathrm{H}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-TBS); $-0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=156.52$ (C-2'); 141.47 (CH-5'); 110.01 (CH-3'); $106.03\left(\mathrm{CH}-4^{\prime}\right) ; 83.93(\mathrm{C}-2) ; 68.62(\mathrm{CH}-$ 1); 66.86 (CH-5); $35.51\left(\mathrm{CH}_{2}-4\right) ; 25.79\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{H}} \mathrm{Bu}-\mathrm{TBS}\right) ; 18.18\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 14.61\left(\mathrm{CH}_{2}-3\right)$; $-4.95,-5.18\left(\mathrm{CH}_{3}-\mathrm{TBS}\right)$. MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}(\%)=287.14\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right) ; 265.15\left([\mathrm{M}+1]^{+}, 10\right)$; 247.16 (36); 239.14 (30); 156.12 (75). HRMS (ESI^{+}): calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{2}$ Si: 287.1443; found: 287.1437.
(2S, 8R)-8-(tert-butyldimethylsilyloxy)-8-(2'-furyl)oct-4-yn-2-ol (21) and (2R, 8R)-8-(tert-butyldimethylsilyloxy)-8-(2'-furyl)oct-4-yn-2-ol (24)

General method

To a solution of alkyne $\mathbf{1 1}(0.496 \mathrm{mmol})$ in THF (5 mL) cooled to $-78^{\circ} \mathrm{C}$ was added, dropwise, $n-\mathrm{BuLi}$ in THF $2.5 \mathrm{M}(218 \mu \mathrm{~L})$ and the mixture was stirred for 1 h at the same temperature. Then, (S) or (R)-propylene oxide $(42 \mu \mathrm{~L})$ and $\mathrm{BF}_{3} \mathrm{OEt}_{2}(69 \mu \mathrm{~L})$ were added, and the reaction was stirred for 3 h in the same conditions. Sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine ($3 \times 5 \mathrm{~mL}$), dried, filtered and concentrated. The residue was purified by chromatography on silica gel using 5\% EtOAc / Hexane to afford alcohols 21 or 24 respectively.
(2S, 8R)-8-(tert-butyldimethylsilyloxy)-8-(2'-furyl)oct-4-yn-2-ol (21).
Yield: 97%; Yellow oil; $\mathrm{R}_{F}=0.22$ ($10 \% \mathrm{EtOAc} /$ Hexane); $[\alpha]_{D}^{22}+31.09$ (c 4.5, CHCl_{3}). IR (NaCl , neat): $3394,2956,2929,2857,1506,1254 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.33\left(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ; 6.25\left(\mathrm{dd}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right) ; 6.17(\mathrm{~d}, \mathrm{~J}=3.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 4.81(\mathrm{dd}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8) ; 3.90(\mathrm{qd}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{~J}=12.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2) ; 2.35-2.17$ (m, $5 \mathrm{H}, \mathrm{H}-6,7$ and -OH); 2.01 (m, $1 \mathrm{H}, \mathrm{H}-3$); 1.89 (m, 1 H, H-3); 1.24 (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1$); 0.87 ($\mathrm{s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$); 0.06 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$); -0.08 (s, 3 H , CH_{3}-TBS). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.64\left(\mathrm{C}-2{ }^{\prime}\right) ; 141.39$ (CH-5'); 110.00 (CH-3'); 105.92 (CH-4'); 82.24, 76.72 (C-4 and 5); 67.03 (CH-8); 66.55 (CH-2); 36.00, 29.38 $\left(\mathrm{CH}_{2}\right) ; 25.77\left(\mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}-\mathrm{TBS}\right) ; 22.22\left(\mathrm{CH}_{3}-1\right) ; 18.18\left(\mathrm{C}-{ }^{-} \mathrm{Bu}-\mathrm{TBS}\right) ; 14.95\left(\mathrm{CH}_{2}\right) ;-4.95,-5.20$ $\left(\mathrm{CH}_{3}\right.$-TBS). Ms $\left(\mathrm{ESI}^{+}\right): m / z(\%)=345.18\left([\mathrm{M}+\mathrm{Na}]^{+}, 71\right) ; 337.17$ (5), 191.10 (100). HRMS (ESI^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}: 345.1856$; found: 345.1836 .
(2R, $8 R$)-8-(tert-butyldimethylsilyloxy)-8-(2'-furyl) oct-4-yn-2-ol (24).
Yield: 93%; Yellow oil; $\mathrm{R}_{F}=0.22$ ($10 \% \mathrm{EtOAc} /$ Hexane); $[\alpha]_{D}^{22}+18.63$ (c 5.5, CHCl_{3}). IR (NaCl , neat): 3394, 2956, 2929, 2857, 1506, $1254 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.33 (d, J = $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '); 6.29 (dd, J = $1.6 \mathrm{~Hz}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '); 6.17 (d, J = 3.2 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 4.81(\mathrm{dd}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8) ; 3.89$ (m, 1 H, H-2); 2.35-2.16 (m, $5 \mathrm{H}, \mathrm{H}-6,7$ and -OH); $2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 1.24(\mathrm{dd}, \mathrm{J}=1.1 \mathrm{~Hz}$, $\mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1$); 0.87 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{t}^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$); 0.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$); -0.08 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}-TBS). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.64$ (C-2'); 141.39 (CH-5'); 110.00 (CH-3'); 105.92 (CH-4'); 82.22, 76.73 (C-4 and 5); 67.03 (CH-8); 66.55 (CH-2); 35.99, 29.37 $\left(\mathrm{CH}_{2}\right) ; 25.77\left(\mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}-\mathrm{TBS}\right) ; 22.24\left(\mathrm{CH}_{3}-1\right) ; 18.17\left(\mathrm{C}-{ }^{-} \mathrm{Bu}-\mathrm{TBS}\right) ; 14.95\left(\mathrm{CH}_{2}\right) ;-4.96,-5.20$ $\left(\mathrm{CH}_{3}\right.$-TBS). MS (ESI $): m / z(\%)=345.18\left([\mathrm{M}+\mathrm{Na}]^{+}, 71\right) ; 337.17$ (5), 191.10 (100). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}: 345.1856$; found: 345.1836.
(1R,7S)-1,7-bis(tert-butyldimethylsilyloxy)-1-(2'-furyl)oct-4-yne (22) and (1R,7R)-1,7-bis(tert-butyldimethylsilyloxy)-1-(2'-furyl)oct-4-yne (25).

General method

To a solution of alcohols 21 or 24 (0.301 mmol) in DMF (5 mL) were added imidazole (1.80 mmol), DMAP (catalytic ammount) and $\mathrm{TBSCl}(0.904 \mathrm{mmol})$, and the reaction was stirred at r.t. for 5 days. Then, EtOAc was added (5 mL) and the mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layer was dried, filtered and concentrated to give a residue
which was purified by chromatography on silica gel using 0.5% EtOAc / Hexane affording 22 or $\mathbf{2 5}$ respectively.
(1R,7S)-1,7-bis(tert-butyldimethylsilyloxy)-1-(2'-furyl)oct-4-yne (22).
Yield: 89%; Yellow oil; $\mathrm{R}_{F}=0.77$ (10% EtOAc / Hexane); $[\alpha]_{D}^{23}+17.81\left(c 10.18, \mathrm{CHCl}_{3}\right)$. IR (NaCl , neat): 2955, 2928, 2856, 1698, 1540, $1254 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ; 6.32\left(\mathrm{dd}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right) ; 6.19(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$); 4.84 (dd, J = $4.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$); $3.92(\mathrm{td}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$); 2.28 (m, $4 \mathrm{H}, \mathrm{H}-2$ and 3); $2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6) ; 1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6) ; 1.26(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, H-8); 0.91 (s, 9 H, 'Bu-TBS); 0.89 (s, 9 H, ${ }^{\text {tBu-TBS); }} 0.10$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$); -0.04 (s, 3 H , CH_{3}-TBS). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.79\left(\mathrm{C}-2^{\prime}\right) ; 141.36\left(\mathrm{CH}-5^{\prime}\right) ; 109.97(\mathrm{CH}-$ 3^{\prime}); 105.96 (CH-4'); $80.99,77.95(\mathrm{C} \equiv \mathrm{C}) ; 68.13(\mathrm{CH}-1) ; 67.07(\mathrm{CH}-7) ; 36.02,29.78\left(\mathrm{CH}_{2}-6\right)$; 25.85, $25.80\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 23.31\left(\mathrm{CH}_{3}-8\right) ; 18.20,18.17\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 15.02\left(\mathrm{CH}_{2}\right) ;-4.69$, $-4.75,-4.93,-5.17\left(\mathrm{CH}_{3}-\mathrm{TBS}\right)$. MS $\left(\mathrm{ESI}^{+}\right): m / z(\%)=459.27\left([\mathrm{M}+\mathrm{Na}]^{+}, 9\right) ; 305.20(100)$; 196.11 (23); 159.12 (14). HRMS (ESI'): calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{NaO}_{3} \mathrm{Si}_{2}$: 459.2721; found: 459.2728.
(1R,7R)-1,7-bis(tert-butyldimethylsilyloxy)-1-(2'-furyl)oct-4-yne (25)
Yield: 72%; Yellow iol; $\mathrm{R}_{F}=0.82$ (10% EtOAc / Hexane); $[\alpha]_{D}^{22}+14.96\left(c 10.06, \mathrm{CHCl}_{3}\right)$. IR (NaCl , neat): 2955, 2928, 2856, 1698, 1540, $1254 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ; 6.31\left(\mathrm{dd}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right) ; 6.19(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}\right) ; 4.84(\mathrm{dd}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1) ; 3.93(\mathrm{dd}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-7); 2.27 (m, $4 \mathrm{H}, \mathrm{H}-2$ and 3); 2.02 (m, $1 \mathrm{H}, \mathrm{H}-6$); 1.92 (m, $1 \mathrm{H}, \mathrm{H}-6$); 1.25 (d, J = 5.9 Hz , $3 \mathrm{H}, \mathrm{H}-8$); 0.91 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$); 0.89 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$); 0.09 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$); -0.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=156.77$ (C-2'); 141.37 (CH-5'); 109.97 (CH-3'); 105.87 (CH-4'); 80.87, 77.96 (C $=\mathrm{C}$); 68.12 (CH-1); 67.05 (CH-7); 36.02, 29.78 $\left(\mathrm{CH}_{2}\right) ; 25.86,25.81\left(\mathrm{CH}_{3}{ }^{-} \mathrm{BBu}-\mathrm{TBS}\right) ; 23.24\left(\mathrm{CH}_{3}-8\right) ; 18.21,18.16\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right) ; 15.02\left(\mathrm{CH}_{2}\right)$; $-4.68,-4.74,-4.93,-5.16\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z(\%)=459.27\left([\mathrm{M}+\mathrm{Na}]^{+}, 9\right) ; 305.20$ (100); 196.11 (23); 159.12 (14). HRMS (ESI^{+}): calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{NaO}_{3} \mathrm{Si}_{2}$: 459.2721 ; found: 459.2728.
($\left.1^{\prime} R, 7^{\prime} S\right)-2-\left[1^{\prime}, 7^{\prime}-b i s(t e r t-b u t y l d i m e t h y l s i l y l o x y) o c t a n y l\right] f u r a n e ~(13) ~ a n d ~(1 ' R, 7 ' R)-2-$ [$1^{\prime}, 7^{\prime}$-bis(tert-butyldimethylsilyloxy)octanyl]furan (26).

General method

To a solution of $\mathbf{2 2}$ or $\mathbf{2 5}(0.291 \mathrm{mmol})$ in hexane (5 mL), was added Pd/C 5% catalyst (6 mg) and the mixture was stirred in H_{2} atmosphere at r.t. for 30 min . After filtration, the filtrate was evaporated and the residue was purified by chromatography on silice gel using 0.5% EtOAc / Hexane to afford $\mathbf{1 3}$ or $\mathbf{2 6}$ respectively.

(1'R,7'S)-2-[1',7'-bis(tert-butyldimethylsilyloxy)octanyl]furan (13)

Yield: 90\%; Yellow oil; $\mathrm{R}_{F}=0.81$ (10% EtOAc / Hexane); $[\alpha]_{D}^{25}+26.55\left(c 10.0, \mathrm{CHCl}_{3}\right)$. IR (NaCl , neat): 2928, 2856, $1698,1540 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{~m}, 1 \mathrm{H}$, H-5); 6.32 (dd, J =1.8 Hz, J=3.1 Hz, 1 H, H-4); 6.17 (d, J = $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$); 4.68 (m, 1 H , $\left.\mathrm{H}-1{ }^{\prime}\right) ; 3.78$ (m, $1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}$); 1.83 (m, $3 \mathrm{H}, \mathrm{H}-2^{\prime}$ and 6^{\prime}); 1.49-1.24 (m, $7 \mathrm{H}, \mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}$ and 6'); 1.13 (d, J = 6.1 Hz, $3 \mathrm{H}, \mathrm{H}-8^{\prime}$); 0.91 (s, 9 H , 'Bu-TBS); 0.90 (s, $9 \mathrm{H},{ }^{\text {'Bu-TBS) }} 0.074$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); 0.070 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); 0.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); - 0.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ TBS). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.54(\mathrm{C}-2) ; 141.12(\mathrm{CH}-5) ; 109.92$ (CH-4); 105.50 (CH-3); 68.61 ($\mathrm{CH}-1^{\prime}$); 68.52 ($\mathrm{CH}-7^{\prime}$); 39.66, 36.91, $29.46\left(\mathrm{CH}_{2}\right) ; 25.94,25.83$
$\left(\mathrm{CH}_{3}{ }^{-}{ }^{-\mathrm{Bu}}\right.$-TBS $) ; 25.73,25.41\left(\mathrm{CH}_{2}\right) ; 23.83\left(\mathrm{CH}_{3}-8\right.$ '); 18.23, 18.18 (C-'Bu-TBS); -4.39, -4.70, $-4.87,-5.09\left(\mathrm{CH}_{3}-\mathrm{TBS}\right)$. MS $\left(\mathrm{ESI}^{+}\right): m / z(\%)=436.30\left(\left[\mathrm{M}+\mathrm{Na}{ }^{+}, 4\right) ; 310.22(29) ; 309.23\right.$ (100); 196.11 (24). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NaO}_{3} \mathrm{Si}_{2}$: 463.3034 ; found: 463.3036.

($\left.\mathbf{1}^{\prime} R, \mathbf{7}^{\prime} \boldsymbol{R}\right)$-2-[1', $\mathbf{7}^{\prime}$-bis(tert-butyldimethylsilyloxy)octanyl]furan (26)

Yield: 93%; Yellow iol; $\mathrm{R}_{F}=0.84$ ($10 \% \mathrm{EtOAc} /$ Hexane); $[\alpha]_{D}^{23}+23.94$ ($c 3.13, \mathrm{CHCl}_{3}$). IR (NaCl , neat): 2928, 2856, 1698, $1540 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.35$ (dd, $\mathrm{J}=0.8 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5) ; 6.31(\mathrm{dd}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) ; 6.16$ (d, J = 3.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$); 4.67 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$); 3.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}$); 1.80 (m, $2 \mathrm{H}, \mathrm{H}-\mathbf{2}^{\prime}$); 1.46-1.23 (m, 8 H, H-3', 4', 5' and 6'); 1.12 (d, J = $6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$ '); 0.90 (s, $9 \mathrm{H},{ }^{\text {'Bu-TBS); }} 0.89$ (s, $9 \mathrm{H}, \mathrm{t}^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$); 0.069 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); 0.061 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS); 0.05 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}-TBS); -0.05 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-TBS). ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.54(\mathrm{C}-2) ; 141.14$ (CH-5); 109.92 (CH-4); 105.51 (CH-3); 68.64 (CH-1'); 68.53 (CH-7'); 39.66, 36.91, 29.48 $\left(\mathrm{CH}_{2}\right) ; 25.94,25.83\left(\mathrm{CH}_{3}-\mathrm{Bu}-\mathrm{TBS}\right) ; 25.74,25.42\left(\mathrm{CH}_{2}\right) ; 23.82\left(\mathrm{CH}_{3}-8\right)$; $18.19\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right)$; $-4.39,-4.70,-4.87,-5.08\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}(\%)=436.30\left([\mathrm{M}+\mathrm{Na}]^{+}, 4\right) ; 310.22$ (29); 309.23 (100); 196.11 (24). HRMS (ESI $^{+}$): calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NaO}_{3} \mathrm{Si}_{2}$: 463.3034 ; found: 463.3036.

(4R, $5 R, 11 S$)-iso-cladospolide $B(7)$ and (4R, $5 R, 11 R)$-iso-cladospolide $B(8)$

General method

To a solution of furane $\mathbf{1 3}$ or $\mathbf{2 6}(0.226 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added Rose Bengal $(6 \mathrm{mg})$ and the resulting pink solution was purged with O_{2}. It was then cooled to $-78{ }^{\circ} \mathrm{C}$ and DIPEA (0.952 mmol) was added. The mixture was irradiated with a 200W lamp under an atmosphere of O_{2} for 2 h . After that, the mixture was allowed to reach the r.t. and the MeOH was evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and to the resulting pink solution was added a solution of Oxalic Acid ($142 \mathrm{mg}, 12 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$), the resulting orange mixture was stirred at r.t. for 2 h . After separation of the two phases, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried, filtered and concentrated in vacuo yielding the expected hydroxybutenolide which was used in the next reaction. To the previous hydroxybutenolide dissolution in $\mathrm{MeOH}(10 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.011 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.904 \mathrm{mmol})$. After the addition, the mixture was stirred under the same conditions for 1 h , after which was added concentrated HCl , dropwise, until $\mathrm{pH}=1$. The mixture was allowed to stir at r.t. for 1 day, after which the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel using 80% EtOAc / Hexane affording iso-cladospolides 7 or $\mathbf{8}$.

(4R, 5R, 11S)-iso-cladospolide B (7)

Yield: 97%; White crystal; $\mathrm{R}_{F}=0.31(100 \% \mathrm{EtOAc}) ;[\alpha]_{D}^{23}+56.36\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $\left\{\right.$ reported synthetic enantiomer of $7^{3 \mathrm{~b}}[\alpha]_{\mathrm{D}}-73.28$ (c1.0, MeOH)\};m.p. 96.7-98.7 ${ }^{\circ} \mathrm{C}$. IR (NaCl , neat): $3420,2931,2857,1748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48$ (dd, $\mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) ; 6.20(\mathrm{dd}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) ; 5.01(\mathrm{dd}, \mathrm{J}=1.8$ $\mathrm{Hz}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$); 3.79 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$ and 7^{\prime}); 2.60-1.70 (s broad, $2 \mathrm{H},-\mathrm{OH}$); 1.60 (m, 2 H, H-2'); 1.39 (m, 8 H, H-3', 4', 5' and 6'); 1.20 (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8^{\prime}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.08(\mathrm{C}=\mathrm{O})$; $154.95(\mathrm{CH}-4)$; $122.69(\mathrm{CH}-3) ; 86.24(\mathrm{CH}-5) ; 71.69$ (CH-1'); 68.08 (CH-7'); 39.05, 33.10, 29.34, 25.56, $25.43\left(\mathrm{CH}_{2}\right) ; 23.55\left(\mathrm{CH}_{3}-8\right.$ '). MS (ESI $\left.{ }^{+}\right)$: $\mathrm{m} / \mathrm{z}(\%)=229.14\left([\mathrm{M}+1]^{+}, 100\right) ; 227.12\left([\mathrm{M}-1]^{+}, 25\right) ; 211.13\left([\mathrm{M}-\mathrm{OH}]^{+}, 77\right)$. HRMS $\left(E S I^{+}\right):$ calcd forC ${ }_{12} \mathrm{H}_{21} \mathrm{O}_{4}: 229.1434$; found: 229.1432 .

($4 R, 5 R, 11 R$)-iso-cladospolide B (8)

Yield: 72%; White solid; $\mathrm{R}_{F}=0.28(100 \% \mathrm{EtOAc}) ;[\alpha]_{D}^{23}+61.05\left(c 1.0, \mathrm{CHCl}_{3}\right) ;\{$ reported synthetic enantiomer of $\left.\mathbf{8}^{3 \mathrm{c}}[\alpha]_{\mathrm{D}}-58.0(\mathrm{c} 0.6, \mathrm{MeOH})\right\}$; m.p. 82.2-86.0 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{NaCl}$, neat): 3420, 2931, 2857, $1748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4); 6.19 (dd, J = $1.6 \mathrm{~Hz}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$); 5.01 (m, $1 \mathrm{H}, \mathrm{H}-5$); 3.78 (m, $2 \mathrm{H}, \mathrm{H}-1$ ' and 7^{\prime}); 2.50-2.06 (s broad, $2 \mathrm{H},-\mathrm{OH}$); 1.58 (m, $4 \mathrm{H}, \mathrm{H}-2$ ' and 6^{\prime}); 1.49-1.22 (m, $6 \mathrm{H}, \mathrm{H}-3^{\prime}, 4^{\prime}$ and 5^{\prime}); 1.19 (d, J = 6.1 Hz, $3 \mathrm{H}, \mathrm{H}-8^{\prime}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.21(\mathrm{C}=\mathrm{O}) ; 154.09$ (CH-4); 122.63 (CH-3); 86.31 (CH-5); 71.58 (CH-1'); 68.05 (CH-7'); 39.03, 33.05, 29.30, 25.54, $25.45\left(\mathrm{CH}_{2}\right) ; 23.51\left(\mathrm{CH}_{3}-8^{\prime}\right) . \quad \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z(\%)=229.14\left([\mathrm{M}+1]^{+}, 100\right) ; 227.12$ ([M-1] $\left.{ }^{+}, 25\right) ; 211.13\left([M-O H]^{+}, 77\right)$. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4}: 229.1434$; found: 229.1432 .

References

1 - a) A. Hirota, H. Sakai, A. Isogai, Y. Kitano, T. Ashida, H. Hirota, T. Takahashi, Agric. Biol. Chem. 1985, 49, 903-904; b) H. Hirota, A. Hirota, H. Sakai, A. Isogai, T. Takahashi, Bull. Chem. Soc. Jpn. 1985, 58, 2147-2148; c) A. Hirota, H. Sakai, A. Isogai, Agric. Biol. Chem. 1985, 49, 731-735; d) Y. Fujii, A. Fukuda, T. Hamasaki, I. Ichimoto, H. Nakajima, Phytochemistry 1995, 40, 1443-1446; e) C. J. Smith, D. Abbanat, V. S. Bernan, W. M. Maiese, M. Greenstein, J. Jompa, A. Tahir, C. M. Ireland, J. Nat. Prod. 2000, 63, 142-145; f) H. Zhang, H. Tomoda, N. Tabata, H. Miura, M. Namikoshi, Y. Yamaguchi, R. Masuma, S. Omura, J. Antibiot. 2001, 54, 635-641.
2 - S. Gesner, N. Cohen, M. Ilan, O. Yarden, S. Carmeli, J. Nat. Prod. 2005, 68, 1350-1353.
3 - For earlier synthesis of iso-cladospolide B, see: a) C. R. Reddy, D. Suman, N. N. Rao, Eur. J. Org. Chem. 2013, 3786-3796; b) M. González, Z. Gándara, A. Martínez, G. Gómez, Y. Fall, Tetrahedron Lett. 2013, 54, 3647-3650; c) C. R. Reddy, N. N. Rao, P. Sujitha, C. G. Kumar, Synthesis 2012, 44, 1663-1666; d) K. R. Prasad, V. R. Gandi, Tetrahedron: Asymmetry 2011, 22, 499-505; e) J. S. Yadav, S. S. Mandal, Synlett 2011, 19, 2803-2806; f) K. R. Prasad, V. R. Gandi, Tetrahedron: Asymmetry 2010, 21, 275276; g) L. Ferrié, S. Reymond, P. Capdeville, J. Cossy, Synlett 2007, 18, 2891-2893; B. M. Trost, A. Aponick, J. Am. Chem. Soc. 2006, 128, 3931-3933; P. Srihari, E. V. Bhasker, S. J. Harshavardhan, J. S. Yadav, Synthesis 2006, 4041-4045; X. Franck, M. E. V. Araujo, J. -C. Jullian, R. Hocquemiller, B. Figadere, Tetrahedron Lett. 2001, 42, 2801-2803.
4 - a) G. Pazos, M. Pérez, Z. Gándara, G. Gómez, Y. Fall, Tetrahedron Lett. 2009, 50, 52855287; b) A. Zúñiga, M. Pérez, G. Pazos, G. Gómez, Y. Fall, Synthesis 2010, 14, 24462450; c) A. Zúñiga, M. Pérez, M. González, G. Gómez, Y. Fall, Synthesis 2011, 20, 3301-3306; d) G. Pazos, M. Pérez, Z. Gándara, G. Gómez, Y. Fall, Tetrahedron 2012, 68, 8994-9003.
5 - a) M. González, Z. Gándara, G. Pazos, G. Gómez, Y. Fall, Synthesis 2013, 45, 625-632;
b) M. Teijeira, Y. Fall, F. Santamarta, E. Tojo, Tetrahedron Lett. 2007, 48, 7926-7929;
c) M. Teijeira, P. L. Suárez, G. Gómez, C. Terán, Y. Fall, Tetrahedron Lett. 2005, 46, 5889-5892.
6 - S. Müller, B. Liepold, G. J. Roth, H. J. Bestman, Synlett 1996, 521-522.

7 - M. González, Z. Gándara, B. Covelo, G. Gómez, Y. Fall, Tetrahedron Lett. 2011, 59835986.

8 - Crystallographic data were collected on a Bruker Smart 1000 CCD diffractometer at CACTI (Universidade de Vigo) at $20^{\circ} \mathrm{C}$ using graphite monochromated Mo $\mathrm{K} \alpha \square$ radiation $(\lambda=0.71073 \AA)$, and were corrected for Lorentz and polarisation effects. The frames were integrated with the Bruker SAINT software package and the data were corrected for absorption using the program SADABS. The structures were solved by direct methods using the program SHELXS97. All non-hydrogen atoms were refined with anisotropic thermal parameters by full-matrix least-squares calculations on F2 using the program SHELXL97. Hydrogen atoms were inserted at calculated positions and constrained with isotropic thermal parameters.The structural data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) with reference number CCDC 985353. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ (FAX: (+44) 1223-336-033; E-mail: deposit@ccdc.cam.ac.uk

[^0]: *Corresponding author: Yagamare Fall
 E-mail address: yagamare@uvigo.es
 DOI: http://dx.doi.org/10.13171/mjc.4.1.2015.17.02.10.25/yagamare

