Cover Image

Synthesis, characterization and cytotoxicity appraisal of original 1, 2, 3-Triazole derivatives, against breast cancer cell lines (MDA-MB-231)

Mohammed Khalaf Mohammed, Zainab Al-Shuhaib, Ali A. A. Al-Shawi

Abstract


The present study established the efficient separate synthesis of four unique 1, 2, 3-triazole derivatives (M1, M2, M3, M4) via conducting 1,3-dipolar cycloaddition of N-((4-azidophenyl) sulfonyl) acetamide, with substituted N-phenylmaleimide. FTIR, 1H NMR, 13C NMR, and mass spectra were utilized for the characterization of the triazoles. The cytotoxic activities of these compounds, with regards to breast cancer cell lines (MDA-MB-231), were then evaluated. The cytotoxicity pre-screening outcomes for 100 µM portrayed a variety of actions, while the IC50 values with concentrations of 0-500 µM for 48 hours, the results are 2.542, 2.929, 2.429, and 2.864 µM for the compounds M1, M2, M3, and M4 respectively. Remarkably, the M2 and M4 para-substituted compounds exhibited superior IC50 values, in comparison to the M1 and M3 ortho-substituted compounds. This suggests that the M1 and M3 compounds have the potential to perform as against breast cancer.


Full Text:

PDF

References


- F. A. Almashal and M. Khalaf,1,3-Dipolar Cycloaddition for 4-Azidobenzene Sulfonamide with Acetylenic and Olefinic Compounds, Basrah Journal of Science, 2014 .32(1), 49-69.

- K. Rajeev, C. S. Prabodh, S.Y. Mohammed, Pharmacological significance of triazole scaffold, Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26(1), 1-21.

- T. W. Kim, Y. Yong, S.Y. Shin, H. Jung, K. H, Park, Y. H. Lee, Y. Lim, K. Y. Jung, Synthesis and biological evaluation of phenyl-1H-1,2,3-triazole derivatives as anti-inflammatory agents. Bioorg Chem. 2015, 59,1-11.

- Q. Li, W. Tan, C. Zhang, G. Gu, Z Guo, Synthesis of water-soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity.” Int J Biol Macromol, 2016, 91, 623-9.

- J. A. dos Santos, R. C. N. Reis Corrales, F. R. Pavan, “Synthesis and antitubercular evaluation of new 1,2,3-triazole derivatives of carbohydrates”, Mediterr.J.Chem., 2012,1(6), 282-288.

- J. C. Li, J. Zhang, M. C. Rodrigues, D. J. Ding,

J. P. Longo, R. B. Azevedo, L. A. Muehlmann, C. S. Jiang, Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg Med Chem Lett. 2016, 26(16), 3881-5.

- X.S. Pan, N.B. Sun, C. Lei, F.Y. He, Crystal Structure, DFT Calculations and Herbicidal Activity of A New 1,2,3-Triazole Derivative Containing Sulfonyl Group, J. Chem. Soc. Pak., 2014, Vol. 36, No. 2.

- W. Tan, Q. Li, W. Li, F. Dong, Z. Guo, Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via 'click chemistry'. Int. J. Biol. Macromol., 2016, 82, 404-10.

- Q. Li, X. Sun, G. Gu, Z. Guo, Novel Water-Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Mar Drugs. 2018, 16(4), pii: E107.

- D. Dheer, V. S. Shankar, Medicinal attributes of 1,2,3-triazoles: Current developments, Bioorganic Chemistry, 2017, 71, 30-54.

- A. Salam, F. Hassan, K. Anil, A. Abdul Hameed, E. Yousif, Chemotherapy of breast cancer by heterocyclic compounds, Int. J. Pharm. Sci. Rev. Res., 41(2), 2016, Article No. 42, 225-231.

- A. F. Kassem, E. Abbas, D. S. El-Kady, H. M. Awad, W. A. El-Sayed, Design, Synthesis and Anticancer Activity of New Thiazole-Tetrazole or Triazole Hybrid Glycosides Targeting CDK-2 via Structure-Based Virtual Screening. Mini Rev. Med. Chem., 2018, doi: 10.2174/ 1389557519666181231121217.

- M. Gilandoust, K. B. Harsha, C. D. Mohan, A. R. Raquib, S. Rangappa, V. Pandey, P. E. Lobie, K. S. Basappa, Synthesis, characterization and cytotoxicity studies of 1,2,3-triazoles and 1,2,4-triazolo [1,5-a] pyrimidines in human breast cancer cells, Bioorg Med Chem Lett. , 2018, 28(13), 2314-2319. doi: 10.1016/j.bmcl.2018.05.020.

- R. R. Ruddarraju, A. C. Murugulla, R. Kotla,

C. Babu Tirumalasetty, R. Wudayagiri, S. Donthabakthuni, R. Maroju, K. Baburao, L. S. Parasa, Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives, Eur. J. Med. Chem., 123, 379-396. doi: 10.1016/ j.ejmech, 2016,07.024.

- C.O. Kappe and E. V. D. Eycken, Click chemistry under non-classical reaction conditions, Chem. Soc. Rev., 2010, 39, 1280–1290.

- P. Veda, P. Ratchanok, A. Nuttapat, W. Apilak, N. Chanin, P. Supaluk, R. Somsak, P. Virapong, Discovery of novel 1,2,3 triazole derivatives as anticancer agents using QSAR and in silico structural modification, Springer Plus, 2015, 4, 571.

- E. Virapong, R. G. Díaz-Peñate, A. Estévez-Braun, A. G. Ravelo, J. M. García-Castellano,

L. Pardo, M. Campillo, Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukaemia HL-60 cell line, J. Med. Chem., 2007, 50, 696-706.

- V. Prachayasittikul, R. Pingaew, A. Worachartcheewan, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives, Eur. J. Med. Chem., 2014, 84, 247-263. doi:10.1016/j.ejmech. 2014, 07, 024.

- M. Alessandro, B. Olga, R. Daniele, B. Tatiana, S. Gianni, T. Massimo and De .R. Carmela, Research Progress in the Modification of Quercetin Leading to Anticancer Agents, Molecules, 2017, 22, 1270.

- L. Wang, J. Wang, L. Fang, Z. Zheng, D. Zhi, L. Shim, C.Ho, H. Zhao, Anticancer Activities of Citrus Peel Polymethoxyflavones Related to Angiogenesis and Others“ Biomed Res Int. 2014, ID 453972.

- F. Al-Mashal and N. Hameed, Uncatalyzed thermal synthesis of new 1, 2, 3- triazole Derivatives, Journal of Basrah Researches, 2014, 40, 1.

- A. Abdolmaleki, P. Pashaie, Synthesis and Characterization of Polyamide Containing Maleimide Pendant Group, Journal of Applied Chemical Research, 2015, 9, 3, 43-54.

- R. Moreno-Fuquen, C. T. Juan, E. Javier, 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid: X-ray and DFT-calculated structure Acta Cryst., 2011, C67, 67-70.

- N. Matuszak, G. Giulio, M. G. Labar and D. M. LamberSt, Synthesis and in Vitro Evaluation of N-Substituted Maleimide Derivatives as Selective Monoglyceride Lipase Inhibitors, J. Med. Chem., 2009, 52, 7410–7420.

- V. Krishnan, R. Kalyanaraman, G. Fathima, K. Sheriff, M. Illiyas, H. Ahmad Rather, R. Thangam and T. Krishnan, “green biosynthesis of silver nanoparticles from Elettaria cardamom (seed) and it’s in vitro cytotoxic activity”, 2015, V4, 723-733.

- A. A. Al Shawi, R. M. Khan, F. Iqbal, M. T. Eupatilin, “A flavonoid compound isolated from the artemisia plant, induces apoptosis and G2/M phase cell cycle arrest in human melanoma A375 cells. African Journal of Pharmacy and Pharmacology, 2011, 5, 582-588.

- V. Krishnan, R. Kalyanaraman, “in-vitro toxicity of silver nanoparticles synthesized by using cloves of Syzygium aromaticum against hep-2 cells derived from larynx carcinoma”, Int. J. Pharm. Bio. Sci., 2016, 7, 442-447.




DOI: http://dx.doi.org/10.13171/mjc941911161021mkm

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Mediterranean Journal of Chemistry