Cover Image

Synthesis of sinapine and its unprecedented ruthenium-catalyzed [2+2] photodimerization

Josephine M Gießel, Tim Kohlmann, Tina Zeitz, Ralph Kluge, René Csuk


Sinapine was easily synthesized from commercially available starting materials in an overall yield of 32% while 0.47% were obtained by its extraction from white mustard. Irradiation of 1 in the presence of Ru(dndp)3Cl2 furnished in a [2+2] cycloaddition cyclobutanoid dimer, a d-truxinic acid. The putative mechanism of this reaction was supported by DFT calculations.

Full Text:



- G. Samuelsson, Drugs of Natural Origin: A Textbook of Pharmacognosy, Swedish Pharmaceutical Press, Stockholm, 1999.

- G.M. Cragg, D.J. Newman, Natural product drug discovery in the next millennium, Pharm. Biol. 2001, 39, 8-17.

- J.K. Borchardt, The beginnings of drug therapy: Ancient Mesopotamian medicine, Drug News Perspect. 2002, 15(3), 187-192.

- O. Wallach, Terpene und Campher, Veit & Co, Leipzig, 1909.

- S. Antonsen, R.B. Østby, Y. Stenstrøm, Naturally Occurring Cyclobutanes: Their Biological Significance and Synthesis, Studies in Natural Products Chemistry, 2018, pp. 1-40.

- M.E. Daub, H. Jung, B.J. Lee, J. Won, M.H. Baik, T.P. Yoon, Enantioselective [2+2] Cycloadditions of Cinnamate Esters: Generalizing Lewis Acid Catalysis of Triplet Energy Transfer, J. Am. Chem. Soc. 2019, 141(24), 9543-9547.

- J.D. Hart, L. Burchill, A.J. Day, C.G. Newton, C.J. Sumby, D.M. Huang, J.H. George, Visible-Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoids A, B, and D, and Rasumatranin D, Angew. Chem. Int. Ed. 2019, 58(9), 2791-2794.

- Q. Li, K. Zhao, A. Peuronen, K. Rissanen, D. Enders, Y. Tang, Enantioselective Total Syntheses of (+)-Hippolachnin A, (+)-Gracilioether A, (-)-Gracilioether E, and (-)-Gracilioether F, J. Am. Chem. Soc. 2018, 140(5), 1937-1944.

- M. Wang, P. Lu, Catalytic approaches to assemble cyclobutane motifs in natural product synthesis, Org. Chem. Front. 2018, 5(2), 254-259.

-Y. Yuan, J.X. Yang, L.H. Nie, B.L. Li, X.B. Qin, J.W. Wu, S.X. Qiu, Three new kavalactone dimers from Piper methysticum (kava), J. Asian Nat. Prod. Res. 2018, 20(9), 837-843.

-P. Chandra, V. Bajpai, M. Srivastva, K.B.R. Kumar, B. Kumar, Metabolic profiling of Piper species by direct analysis using real-time mass spectrometry combined with principal component analysis, Anal. Methods 2014, 6(12), 4234-4239.

-B.R. Lisbet, J.M. Mikkelsen, Combination chemotherapy compositions containing tacrolimus in combination of agents for regulating CYP3A4 or P-glycoprotein level, Lifecycle Pharma A/S, Den. 2007, p. 66pp.

-R. Muharini, Z. Liu, W. Lin, P. Proksch, New amides from the fruits of Piper retrofractum, Tetrahedron Lett. 2015, 56(19), 2521-2525.

-L.B. Rankloeve, Pharmaceutical compositions comprising tacrolimus and a CYP3A4 inhibitor, 2006, PCT/DK2006/050025

-M. Takahashi, M. Ichikawa, S. Aoyagi, C. Kibayashi, Total synthesis of dipiperamide A and revision of stereochemical assignment, Tetrahedron Lett. 2005, 46(1), 57-59.

-S. Tsukamoto, B.-C. Cha, T. Ohta, Dipiperamides A, B, and C: bisalkaloids from the white pepper Piper nigrum inhibiting CYP3A4 activity, Tetrahedron 2002, 58(9), 1667-1671.

-S. Tsukamoto, K. Tomise, K. Miyakawa, B.C. Cha, T. Abe, T. Hamada, H. Hirota, T. Ohta, CYP3A4 Inhibitory Activity of New Bisalkaloids, Dipiperamides D and E, and Cognates from White Pepper, Bioorg. Med. Chem. 2002, 10(9), 2981-2985.

-K. Wei, W. Li, K. Koike, Y. Chen, T. Nikaido, Nigramides A-S, Dimeric Amide Alkaloids from the Roots of Piper nigrum, J. Org. Chem. 2005, 70(4), 1164-1176.

- S.R. Chintala, J. Fox, Enantioselective synthesis of cyclobutanes via sequential Rh-catalyzed bicyclobutanation/Cu-catalyzed homoconjugate addition and design of mixed-ligand chiral rhodium (II) catalysts for enantioselective transformations of α-alkyl-α-diazoesters, Abstracts of Papers, 252nd ACS National Meeting & Exposition, Philadelphia, PA, United States, August 21-25, 2016, 2016, ORGN-40.

-F. Frebault, N. Maulide, Total Synthesis and Structural Revision of the Piperarborenines: When Photochemistry Meets C-H Activation, Angew. Chem., Int. Ed. 2012, 51(12), 2815-2817.

-W.R. Gutekunst, P.S. Baran, Total Synthesis and Structural Revision of the Piperarborenines via Sequential Cyclobutane C-H Arylation, J. Am. Chem. Soc. 2011, 133(47), 19076-19079.

-W.R. Gutekunst, P.S. Baran, Applications of C-H Functionalization Logic to Cyclobutane Synthesis, J. Org. Chem. 2014, 79(6), 2430-2452.

-J.-L. Hu, L.-W. Feng, L. Wang, Z. Xie, Y. Tang, X. Li, Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of (+)-Piperarborenine B, J. Am. Chem. Soc. 2016, 138(40), 13151-13154.

-F.-P. Lee, Y.-C. Chen, J.-J. Chen, I.-L. Tsai, I.S. Chen, Cyclobutanoid amides from Piper arborescens, Helv. Chim. Acta 2004, 87(2), 463-468.

- T. Lynch-Colameta, R. Telmesani, A.B. Beeler, Intermolecular synthesis and medicinal chemistry of cinnamate and cinnamide derived cyclobutanes, Abstracts of Papers, 250th ACS National Meeting & Exposition, Boston, MA, United States, August 16-20, 2015, 2015, CHED-292.

-R.A. Panish, S.R. Chintala, J.M. Fox, Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B, Angew. Chem., Int. Ed. 2016, 55(16), 4983-4987.

-Y. Tang, Asymmetric catalytic reactions: Recent use of TOX and SaBOX ligands, Abstracts of Papers, 254th ACS National Meeting & Exposition, Washington, DC, USA, August 20-24, 2017, 2017, ORGN-258.

- I.L. Tsai, F.-P. Lee, C.-C. Wu, C.-Y. Duh, T. Ishikawa, J.-J. Chen, Y.-C. Chen, H. Seki, I.S. Chen, New cytotoxic cyclobutanoid amides, a new furanoid lignan and antiplatelet aggregation constituents from Piper arborescens, Planta Med. 2005, 71(6), 535-542.

-D.P. Bezerra, C. Pessoa, M.O. de Moraes,

N. Saker-Neto, E.R. Silveira, L.V. Costa-Lotufo, Overview of the therapeutic potential of piplartine (piperlongumine), Eur. J. Pharm. Sci. 2013, 48(3), 453-463.

-K. Piska, A. Gunia-Krzyzak, P. Koczurkiewicz, K. Wojcik-Pszczola, E. Pekala, Piperlongumine (piplartine) as a lead compound for anticancer agents - Synthesis and properties of analogues: A mini-review, Eur. J. Med. Chem. 2018, 156, 13-20.

-S. Prasad, A.K. Tyagi, Historical Spice as a Future Drug: Therapeutic Potential of Piperlongumine, Curr. Pharm. Des. 2016, 22(27), 4151-4159.

-S. Sommerwerk, R. Kluge, D. Ströhl, L. Heller, A.E. Kramell, S. Ogiolda, P. Liebing, R. Csuk, Synthesis, characterization and cytotoxicity of new piplartine dimers, Tetrahedron 2016, 72(11), 1447-1454.

- J. Wiemann, J. Karasch, A. Loesche, L. Heller, W. Brandt, R. Csuk, Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase, Eur. J. Med. Chem. 2017, 139, 222-231.

- G. Dominguez, J. Perez-Castells, Alkenes in [2+2+2] Cycloadditions, Chem-Eur. J. 2016, 22(20), 6720-6739.

- D. Cambie, T. Noel, Solar Photochemistry in Flow, Topics Curr Chem 376(6) (2018).

- A.A. Aachary, U. Thiyam-Hollander, An update on characterization and bioactivities of sinapic acid derivatives, CRC Press, 2013, pp. 21-38.

- N. Niciforovic, H. Abramovic, Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity, Compr. Rev. Food Sci. Food Saf. 2014, 13(1),


-V. Boscaro, L. Boffa, A. Binello, G. Amisano,

S. Fornasero, G. Cravotto, M. Gallicchio, Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of sinapis nigra l. and sinapis alba l. extracts, Molecules 2018, 23(11), 3004/1-3004/18.

-J. Dubie, A. Stancik, M. Morra, C. Nindo, Antioxidant extraction from mustard (Brassica juncea) seed meal using high-intensity ultrasound, J. Food Sci. 2013, 78(4-5-6), E542-E548.

-J. Jiang, Y. Wang, T. Xie, H. Rong, A. Li, Y. Fang, Y. Wang, Metabolic characteristics in meal of black rapeseed and yellow-seeded progeny of Brassica napus-Sinapis alba hybrids, Molecules 2015, 20(12), 21204-21213.

-M. Zhang, C. Zheng, M. Yang, Q. Zhou, W. Li, C. Liu, F. Huang, Primary Metabolites and Polyphenols in Rapeseed (Brassica napus L.) Cultivars in China, J. Am. Oil Chem. Soc. 2019, 96(3), 303-317.

-Y. Li, J. Li, Q. Su, Y. Liu, Sinapine reduces non-alcoholic fatty liver disease in mice by modulating the composition of the gut microbiota, Food Funct. 2019, 10(6), 3637-3649.

-Y.-F. Xian, Z. Hu, S.-P. Ip, J.-N. Chen, Z.-R. Su, X.-P. Lai, Z.-X. Lin, Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation, Phytomedicine 2018, 50, 196-204.

-N. Martinovic, N. Poklar Ulrih, H. Abramovic, Sinapic Acid and its Derivatives Increase Oxidative Stability in Different Model Lipid Systems, Eur. J. Lipid Sci. Technol. 2019, 121(4),1800326.

-M. Rohit, T. Ashok, R. Vijaykumar, K. Kashniyal, Molecular docking study of Cassia tora, Brassica campestris and Calotropis procera as acetylcholinesterase inhibitor, Indian J. Pharm. Educ. Res. 2016, 50(1), 116-122.

-L. von Bao, M. Hirschbrunn, Über das Sinapin, Liebigs Ann. Chem. 1852, 84, 10-32.

-E. Späth, Die Synthese des Sinapins, Monatsh. Chem. 1920, 41, 271-85.

-J. Du, T.P. Yoon, Crossed Intermolecular [2+2] Cycloadditions of Acyclic Enones via Visible Light Photocatalysis, J. Am. Chem. Soc. 2009, 131(41), 14604-14605.

-K.P.S. Zanoni, R.R.C. Vilela, I.D.A. Silva, N.Y.M. Iha, H. Eckert, A.S.S. de Camargo, Photophysical Properties of Ir(III) Complexes Immobilized in MCM-41 via Templated Synthesis, Inorg Chem 2019, 58(8), 4962-4971.

-M.A. Ischay, M.E. Anzovino, J. Du, T.P. Yoon, Efficient visible light photocatalysis of [2+2] enone cycloadditions, J. Am. Chem. Soc. 2008, 130(39), 12886-12887.

-J. Gadamer, Über das Sinapin, Ber. Dtsch. chem. Ges. 1897, 30, 2328-30.

-A.T. Babayan, A.A. Grigoryan, A.N. Grigoryan, Amines and quaternary ammonium compounds. VII. Reaction of haloalkyl-containing tertiary amines and their methiodides with alkali, Zh. Obshch. Khim. 1957, 27, 1827-32.


  • There are currently no refbacks.

Copyright (c) 2019 Mediterranean Journal of Chemistry