Cover Image

Electrodeposition of Cu-Zn-Sn coating in citrate medium

Yassine Salhi, Sghir Cherrouf, Mohammed Cherkaoui

Abstract


The electrodeposition of Cu-Zn-Sn (CZT) coating at ambient temperature was investigated. The bath consists of metal salts SnSO4, ZnSO4,7H2O and CuSO4,5H2O and sodium citrate (NaC6H5Na3O7,2H2O) as a complexing agent. For precipitation, the pH is maintained at 5. The reducing of copper, tin and zinc through Cu2HCit3, Sncit2 and ZnHcit complexes respectively are confirmed by the presence of three cathodic peaks on the voltammograms realized on steel and ITO glass substrate. X-ray diffraction patterns revealed peaks corresponding to the phases: Cu-Zn cubic, Cu-Sn hexagonal and β-Sn tetragonal. The deposition rate is 35 μm/h. SEM observation and EDAX analysis showed that the coating consists of a uniform CZT layer of which composition is 55% copper, 20% zinc and 25% tin at -1.5V.  A preliminary study showed a remarkable improvement in the corrosion resistance of CZT coated steel in comparison with bare steel.


Full Text:

PDF

References


- E. Budman, D. Stevens, Tin-Zinc plating, Trans. Inst. Met. Finish., 1998, 76(3), B34.

- E. Guaus, J. Torrent-Burgue´s, Tin–zinc electrodeposition from sulphate–tartrate baths, J. of Electroanal. Chem., 2005, 575, 301-309.

- S. Dubent, M.L.A.D. Mertens, M. Saurat, Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath, Mat. Chem. Phys., 2010, 120, 371-380.

- H. Kazimierczak, P. Ozga, Electrodeposition of Sn–Zn and Sn–Zn–Mo layers from citrate solutions, Surf. Sci., 2013, 607, 33-38.

- J. Zhang, C. Gu, J. Tu, Potentiodynamical deposition and corrosion behavior of thin Zn-Sn coatings with a layered structure and varied composition from deep eutectic solvent, Surf. Coat. Tech., 2017, 320, 640-647.

- S.J. Blunden, A.J. Killmeyer, Sn-Zn alloy electroplates outperform cadmium deposits, Adv. Mater. Processes, 1991, 140(6), 37-39.

- European Patent Plating bath and method for electroplating tin-zinc alloys, EP 1 201 789 B9, 2002, 1-17.

- E. Budman, M. McCoy, Tin-Zinc plating, Met. Finish., 1995, 93 (9), 10-11.

- M. Kiajima, T. Shono, Development of Sn-Zn-Al Lead-Free Solder Alloys, FUJITSU Sci. Tech. J., 2005, 41(2), 225-235.

-E. Guaus, J. Torrent-Burgue´s, Tin-zinc electrodeposition from sulphate-/gluconate baths, J. Electroanal. Chem., 2003, 549, 25-36.

-S. Dubent, M. De Petris-Wery, M. Saurat, H.F. Ayedi, Composition control of tin–zinc electrodeposits through means of experimental strategies, Mat. Chem. Phys., 2007, 104, 146-152.

-C. Zanella, S. Xing, F. Deflorian, Effect of electrodeposition parameters on chemical and morphological characteristics of Cu–Sn coatings from a methanesulfonic acid electrolyte, Surf. Coat. Tech., 2013, 236, 394-399.

-H. Kazimierczak, P. Ozga, A. Jałowiec, R. Kowalik, Tin–zinc alloy electrodeposition from aqueous citrate baths, Surf. Coat. Tech., 2014, 240, 311-319.

-W. Zhang, J. Guebey, M. Toben, K. Weitershaus, Neuer Hochgeschwindigkeitselektrolyt für die galvanise Abscheidung von

glänzenden Reinzinnschichten bei erhöhten Betriebstemperaturen, Luzern/Schweiz, 2011, 520-528.

-A. Sharma, S. Bhattacharya, S. Das, K. Das, Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte, Appl. Surf. Sci., 2014, 290, 373-380.

-J.F. Huang, I.W. Sun, Electrochemical Studies of Tin in Zinc Chloride-1-ethyl-3-methylimidazolium Chloride Ionic Liquids, J. Electrochem. Soc., 2003, 150 (6), 299-306.

-S. Ho Kee, W.J. Kim, J.P. Jung, Reflection characteristics of electroless deposited Sn-3.5Ag for LED lead frames, Surf. Coat. Tech., 2013, 235, 778-783.

-W.X. Zhang, Z.H. Jiang, G.Y. Li, Q. Jiang, J.S. Lian, Electroless Ni–Sn–P coating on AZ91D magnesium alloy and its corrosion resistance, Surf. Coat. Tech., 2008, 202, 2570-2576.

-E. Rudnik, G. Włoch, Studies on the electrodeposition of tin from acidic chloride–gluconate solutions, Appl. Surf. Sci., 2013, 265, 839-849.

- M. Slupska, P. Ozga, Electrodeposition of Sn-Zn-Cu alloys from citrate solutions, Electrochimica Acta, 2014, 141, 149–160.

-R. Lechner, S. Jost, J. Palm, M. Gowtham, F. Sorin, B. Louis, H. Yoo, R.A. Wibowo, R. Hock, Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors, Thin Solid Films, 2012, 535, 5-9.

-J. Iljina, O. Volobujeva, T. Raadik, N. Revathi, J. Raudoja, M. Loorits, R. Traksmaa, E. Mellikov, Selenisation of sequentially electrodeposited Cu–Zn and Sn precursor layers, Thin Solid Films, 2013, 535,14-17.

- G. Banerjee, S. Das, S. Ghoch, Optical Properties of Cu2ZnSnS4 (CZTS) Made By SILAR Method, Materialstoday: PROCEEDINGS, 2019, 18 Part 2, 494-500.

-R.N. Bhattacharya, J.Y. Kim, Cu-Zn-Sn-S Thin Films from Electrodeposited Metallic Precursor Layers, The Open Surface Science Journal, 2012, 4, 19-24.

-Z. Chea, L. Han, L. Wan, C. Zhang, H. Niu, J. Xu, Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu–Zn–Sn precursors,Applied Surface Science, 2011, 257, 8490-8492.

-Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors by Jonathan James Scragg, University of Bath, Department of Chemistry, 2010, 1-244.

-Elektrochemische Legierungsabscheidung zur Herstellung von Cu2ZnSnS4 Dünnschichtsolarzellen von Holger H. Kühnlein aus Breitengüßbach, Dresden Universität, 2007, 1-127.

-M. Valdes, M. Modibedi, M. Mathe, T. Hilliec, M. Vazqueza, Electrodeposited Cu2ZnSnS4 thin films, Electrochimica Acta, 2014, 128, 393–399.

-R. Juskenas , S. Kanapeckaite, V. Karpaviciene, Z. Mockus, V. Pakstas, A. Selskiene, R. Giraitis, G. Niaura, A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells, Solar Energy Materials & Solar Cells, 2012, 101, 277–282.

-M.S. Kumar, S.P. Madhusudanan, S.K. Batabyal, Substitution of Zn in Earth Abundant Cu2ZnSn(S, Se)4 based thin-film solar cells – A status review, Solar Energy Materials and Solar Cells, 2018, 185, 287-299.

-M.F. de Carvalho, I.A. Carlos, Microstructural characterization of Cu-Sn-Zn electrodeposits produced potentiostatically from acid baths based on trisodium nitrilotriacetic, Journal of Electroanalytical Chemistry, 2018, 823, 737-746.

-Y. Salhi, S. Cherrouf, M. Cherkaoui, K. Abdelouahdi, Electrodeposition of nanostructured Sn–Zn coatings, Applied Surface Science, 2016, 367, 64-69.




DOI: http://dx.doi.org/10.13171/mjc9601071073ys

Copyright (c) 2020 Mediterranean Journal of Chemistry