Cover Image

Optimization of the operating parameters of electrocoagulation using aluminum electrode and application to the Dam waters of Sidi Said Ben Mâachou

Anass Laabi, Brahim Lekhlif, Abdellah Anouar Elfoulani, Elhassan Mallil

Abstract


The objective of this work was to optimize electrocoagulation treatment parameters for the removal of colloidal suspension in dam water, reducing the cost and improving the quality of the treatment. For this purpose, we studied the impact of optimizing the volume of treated water and the agitation speed on the efficiency of electrocoagulation treatment of synthetic water simulating surface water. After the optimization of these parameters, we proceeded to apply it on the waters of the Sidi Said Ben Mâachou dam. The electrocoagulation test was realized in a batch reactor with two flat, parallel aluminum electrodes powered by a direct voltage of 12 V DC voltage. The ions released by electrolysis are stirred using a mechanical stirrer with flat blades. Performance monitoring was carried out using the following parameters: pH, conductivity, turbidity. The analysis of the various monitoring parameters showed that the performance of electrocoagulation is affected by the factors studied. The results obtained showed that intensive agitation of the solution leads to the destruction of the flocs, which subsequently minimizes the efficiency of the treatment.


Full Text:

PDF

References


- B. Lekhlif, F. Eddaqaq, A. Dani, K. Digua, B. Bejjany, E. Lakhdar, Z. AitYacine, H. Hanine, Role of clay in the treatment of surface water by Electrocoagulation, Physical and Chemical News, 2013, 69, 52-60.

- E. Butler, Y. T. Hung, R. Y. L. Yeh, M. S. A. Ahmad, Electrocoagulation in Wastewater Treatment, Water, 2011, 3, 495-525.

- L. K. Dubrawski, M. Mohseni, In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal, water research, 2013, 47, 5371-5380.

- F. Asgharyan, M. K. Nikou, B. Anvaripour, I. Danaee, The Effect of Different Electrodes on Humic Acid Removal by Electrocoagulation, Iranian Journal of Oil & Gas Science and Technology, 2018, 7 (2), 52-63.

- M. Bennajah, Traitement des rejets industriels liquide par électrocoagulation/électroflotation en réacteur airlift, l’institut national polytechnique de toulouse, France, 2007.

- S. Chellam, M. A. Sari, Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control, Journal of Hazardous Materials, 2016, 304, 490-501.

- M. Han, J. Song, A. Kwon, preliminary investigation of electrocoagulation as a substitute for chemical coagulation, Water Science and Technology, 2002, 2, 73-76.

- M. Kobyaa, U. Gebologlu, F. Ulu, S. Oncel, E. Demirbas, removal of arsenic from drinking water by the electrocoagulation using Fe and al electrodes, Electrochimica Acta, 2011, 56, 5060–5070.

- A. S. Escobara, A. P. Mateusa, A. L. Vasquezb, Electrocoagulation-photocatalyticprocess for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kineticstudy, Catalysis today, 2016, 266, 120–125.

- G. Chen, Electrochemical technologies in wastewater treatment, Separation and Purification Technology, 2004, 38, 11-41.

- P. Aswathy, R. Gandhimathi, S. T. Ramesh, P. V. Nidheesh, Removal of organics from bilge water by batch electrocoagulation process, Separation and Purification Technology, 2016, 159, 108-115.

- K. Ulucan, H. A. Kabuk, F. Ilhan, U. Kurt, Electrocoagulation process application in bilge water treatment using response surface methodology, Int. J. Electrochem. Sci., 2014, 9, 2316-2326.

- F. Sher, K. Hanif, S. Z. Iqbal, M. Imran, Implications of advanced wastewater treatment: Electrocoagulation and electroflocculation of effluent discharged from a wastewater treatment plant, Journal of Water Process Engineering, 2020, 33, 101101.

- T. R. Devlin, M. S. Kowalski, E. Pagaduan, X. Zhang, V. Wei, J. A. Oleszkiewicz, Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes, J. Hazard. Mater., 2019,368, 862–868.

- M. Elazzouzi, K. Haboubi, M. S. Elyoubi, Electrocoagulation-flocculation as a low-cost process for pollutants removal from urban wastewater, 2017, 117, 614-626.

- P. M. Bertsch, D. R. Parker, Aqueous polynuclear aluminum species, The Environmental Chemistry of Aluminum; ed. by G. Sposito; Lewis Publishers: London, 1995, 117-168.

- S. Lu, R. J. Pugh, E. Forssberg, Interfacial separation of particles; ed.by D. Mobius, R. Miller; Elsevier, Amsterdam, 2005, 336.

- F. Zidane, P. Drogui, B. Lekhlif, J. Bensaid, J. F. Blais, S. Belcadi, K. Kacemi. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. J. Hazard. Mater, 2008, 155, 153-163.

- Y. Y. Han, G. Yu, Q. Zhuo, S. Deng, J. Wu, P. Zhang, Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode, Chemical Engineering Journal, 2016, 303, 384-390.

- K. P. Y. Shak, T. Y. Wu, Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and flocs characterization, Chem. Eng. J., 2014, 256, 293–305.

- B. Khaled, B. Wided, H. Béchir, A. Limam, L. Mouna, Z. Tlili, Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater, Arabian Journal of Chemistry, 2019, 12, 1848-1859.

- M. Ali Zazouli, M. Taghavi, E. Bazraschan, Influence of solution chemistry on phenol removal from aqueous environments by electrocoagulation process using aluminum electrodes, J. Health scope, 2012, 66-70.

- F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry waste-water by electrocoagulation, J Chem Technol Biotechnol., 2011, 86, 1113-1120.

- M. A. García-Morales, J. C. González Juárez, S. Martínez-Gallegos, G. Roa-Morales, E. Peralta, E. M. de.Campo López, C. Barrera-Díaz, V. M. Miranda, T. T. Blancas, Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration, International Journal of Photoenergy, 2018, 2018, 1-7.

- F. Eddaqaq, B. Lekhlif, A. Dani, K. Digua, Suspended Solids and Organic Matter Elimination from Superficial Raw Waters by Electrocoagulation Process in an Airlift Reactor Internal Loop, Int. J. Appl. Chem., 2016, 3, 1-6.

- B. Merzouk, K. Madani, A. Sekki, Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies, Desalination, 2010, 250, 573–577.

- A. Qlihaa, S. Dhimni, F. Melrhaka, N. Hajjaji, A. Srhiri, Caractérisation physico chimique d’une argile Marocaine, J. Mater. Environ. Sci., 2016, 7, 1741-1750.

- M. El Halim, L. Daoud1, M. El Ouahabi , J. Amakrane , N. Fagel, Mineralogy and firing characteristics of clayey materials used for ceramic purposes from Sale region (Morocco), J. Mater. Environ. Sci., 2018, 9, 622-634.

- H. Sadki, K. Ziat, M. Saidi, Adsorption d’un colorant cationique d’un milieu aqueux sur une argile locale activée, Mater. Environ. Sci., 2014, 5, 2060-2065.

- D. I. Nistor, N. D. Miron, I. Siminiceanu, Préparation des argiles pontées d’origine roumaine avec des polycations d’aluminium et de fer, scientific study and research, 2006, 7 (3), 505-514.




DOI: http://dx.doi.org/10.13171/mjc10402004241251al

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mediterranean Journal of Chemistry