Cover Image

Physicochemical and in vitro bioactivity studies of bioactive glasses in the SiO2-CaO-MgO-P2O5, SiO2-Na2O-CaO-P2O5 and SiO2-Na2O-CaO-MgO-P2O5 systems

Smaiel Herradi, Sara Bouhazma, Sanae Chajri, Imane Adouar, Souad Rakib, Mohamed Khaldi, Brahim El Bali, Mohammed Lachkar


Glasses in the quaternary and quinary system SiO2-CaO-MgO-P2O5 (SCMP), SiO2-Na2O-CaO-P2O5 (SNCP) and SiO2-Na2O-CaO-MgO-P2O5 (SNCMP), have been prepared by using the sol-gel technique. Investigations of structural and bioactive properties of these glasses have been undertaken by using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The in vitro bioactivity was assessed by determining the changes in surface morphology and composition after soaking in simulated body fluid (SBF) for up to 30 days at 37°C. X-ray diffraction patterns indicated the formation of hydroxycarbonated apatite layer (HCA) after only one hour for SNCMP glass and after four days for SCMP and SNCP glasses. Furthermore, observed bands of FTIR spectra confirmed the growth of HCA layer during in vitro test.

Moreover, the dissolution rate has been investigated using energy-dispersive X-ray spectroscopy. The observed EDS patterns confirmed the growth of HCA layer on all samples surfaces during in vitro analysis. On the one hand, we report the existence of Na2Ca2Si3O9 (that couple good mechanical strength with satisfactory biodegradability) as a single crystalline phase in the SNCP glass when calcined at 600°C. On the other hand, we have noticed that the coexistence of magnesium and sodium both enhanced the dissolution rate and hindered the crystallization in the SNCMP glass at 600°C.

Full Text:



- Y. Al-Hadeethi, M. S. Al-Buriahi, M. I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies, Ceram. Int., 2020, 46, 5306-5314.

- F. Baino, G. Novajra, V. Miguez-Pacheco, A. R. Boccaccini, C. Vitale-Brovarone, Bioactive glasses: special applications outside the skeletal system, J. Non-Cryst. Solids, 2016, 432, 15-30.

- J. M. Tainio, D. A. Salazar, A. Nommeots-Nomm, C. Roiland, B. Bureau, D. R. Neuville, D.S. Brauerb, J. Massera, Structure and in vitro dissolution of Mg and Sr containing borosilicate bioactive glasses for bone tissue engineering, J. Non-Cryst. Solids, 2020, 533, 119893.

- M. Fábián, Z. Kovács, J. L. Lábár, A. Sulyok, Z. E. Horváth, I. Székács, V. K. Kis, Network structure and thermal properties of bioactive (SiO2-CaO-Na2O-P2O5) glasses, J. Mater. Sci., 2020, 55, 2303-2320.

- V. Lalzawmliana, A. Anand, M. Roy, B. Kundu, S. K. Nandi, Mesoporous bioactive glasses for bone healing and biomolecules delivery, Mater. Sci. Eng. C, 2020, 106, 110180.

- E. Fiume, C. Migneco, E. Verné, F. Baino, Comparison between Bioactive Sol-Gel and Melt-Derived Glasses/Glass-Ceramics Based on the Multicomponent SiO2-P2O5-CaO-MgO-Na2O-K2O System, Materials, 2020, 13, 540.

- N. Ranga, S. Gahlyan, S. Duhan, Antibacterial Efficiency of Zn, Mg and Sr Doped Bioactive Glass for Bone Tissue Engineering, J. Nanosci. Nanotechnol., 2020, 20, 2465-2472.

- H. E. Skallevold, D. Rokaya, Z. Khurshid, M. S. Zafar, Bioactive Glass Applications in Dentistry, Int. J. Mol. Sci., 2019, 20, 5960.

- P. K. Modi, A. Prabhu, Y. P. Bhandary, S. Shenoy, A. Hegde, S. P. ES, R. P. Johnson, S. P. Das, S. Vazirally, P. D. Rekha, Effect of calcium glucoheptonate on proliferation and osteogenesis of osteoblast-like cells in vitro, PloS one, 2019, 14, e0222240.

- P. Naruphontjirakul, O. Tsigkou, S. Li, A. E. Porter, J. R. Jones, Human mesenchymal stem cells differentiate into an osteogenic lineage in the presence of strontium containing bioactive glass nanoparticles, Acta biomater., 2019, 90, 373-392.

- S. K. Venkatraman, S. Swamiappan, Review on calcium and magnesium-based silicates for bone tissue engineering applications, J. Biomed. Mater. Res. A, 2020,108, 1546-1562.

- W. Götz, E. Tobiasch, S. Witzleben, M. Schulze, Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation, Pharmaceutics, 2019, 11, 117.

- M. M. Belluci, R. S. de Molon, C. Rossa Jr, S. Tetradis, G. Giro, P. S. Cerri, E. Marcantonio Jr, S. R. P. Orrico, Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption, J. Nutr. Biochem., 2020, 77, 108301.

- S. K. Arepalli, H. Tripathi, P. P. Manna, P. Pankaj, S. Krishnamurthy, S. C. Patne, R. Pyare, S. P. Singh, Preparation and in vitro investigation on the bioactivity of magnesia-contained bioactive glasses, J. Aust. Ceram. Soc., 2019, 55, 145-155.

- B. Karakuzu-Ikizler, P. Terzioğlu, Y. Basaran-Elalmis, B. S. Tekerek, S. Yücel, Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica, Bioact. Mater., 2020, 5, 66-73.

- Z. Tabia, K. El Mabrouk, M. Bricha, K. Nouneh, Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity, RSC Adv., 2019, 9, 12232-12246.

- A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass, Ceram. Int., 2018, 44, 9422-9432.

- W. Hong, Q. Zhang, H. Jin, L. Song, Y. Tan, L. Luo, F. Guo, X. Zhao, P. Xiao, Roles of strontium and hierarchy structure on the in vitro biological response and drug release mechanism of the strontium-substituted bioactive glass microspheres, Mater. Sci. Eng., C, 2020, 107, 110336.

- M. S. Zafar, I. Farooq, M. Awais, S. Najeeb, Z. Khurshid, S. Zohaib, In Biomedical, therapeutic and clinical applications of bioactive glasses; ed. by G. Kaur; Woodhead Publishing: Cambridge, UK, 2019, 313-329.

- A. Thomas, E. Johnson, A. K. Agrawal, J. Bera, Preparation and characterization of glass-ceramic reinforced alginate scaffolds for bone tissue engineering, J. Mater. Res., 2019, 34, 3798-3809.

- C. Blaeß, R. Müller, G. Poologasundarampillai, D. S. Brauer, Sintering and concomitant crystallization of bioactive glasses, Int. J. Appl. Glass Sci., 2019, 10, 449-462.

- E. N. Bulanov, M. S. Boldin, A. V. Knyazev, V. Z. Korokin, A. A. Popov, Obtaining Ceramic Materials from Hydroxyapatite Using Spark-Plasma Sintering, High Temp. Mater. Processes, 2018, 37, 613-617.

- T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? , Biomaterials, 2006, 27, 2907-2915.

- S. K. Arepalli, H. Tripathi, P. P. Manna, P. Pankaj, S. Krishnamurthy, S. C. Patne, R. Pyare, S. P. Singh, Enhanced in vivo biocompatibility of magnesia-contained bioactive glasses, J. Aust. Ceram. Soc., 2019, 55, 337-342.

- R. Karan, P. Manna, P. K. Maiti, K. Das, Influence of selenium dioxide (SeO2) on properties of bioglass in SiO2-Na2O-CaO-P2O5 system, J. Aust. Ceram. Soc., 2020, 1-11.

- S. Chajri, S. Bouhazma, I. Adouar, S. Herradi, M. Khaldi, B. El Bali, M. Lachkar, Synthesis, characterization and evaluation of bioactivity of glasses in the CaO-SiO2-P2O5-MgO system with different CaO/MgO ratios, J. Phys. Conf. Ser., 2019, 1292, 012013.

- A. Bachar, R. Catteaux, C. Duée, F. Désanglois, I. Lebecq, C. Mercier, C. Follet-Houttemane, In Biomedical, therapeutic and clinical applications of bioactive glasses; ed. by G. Kaur; Wood head Publishing: Cambridge, UK, 2019, 69-123.

- H. R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, G. E. Stan, J. M. Ferreira, Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering, Materials, 2018, 11, 2530.



  • There are currently no refbacks.

Copyright (c) 2020 Mediterranean Journal of Chemistry