Cover Image

Structure, Infrared and Raman spectroscopic studies of new AII(SbV0.50CrIII0.50)(PO4)2 (A = Ba, Sr, Pb) yavapaiite phases

Hajar Bellefqih, Rachid Fakhreddine, Rachid Tigha, Abderrahim Aatiq


Three new AII(Sb0.5Cr0.5)(PO4)2 (AII = Ba, Sr, Pb) yavapaiite phases, abbreviated as [ASbCr], have been successfully synthesized by a conventional solid-state reaction in air atmosphere. Their crystal structures have been investigated by Rietveld analysis from the X-ray powder diffraction method. Results show that Ba(Sb0.5Cr0.5)(PO4)2 crystallizes in monoclinic C2/m space group (Z = 2) with cell parameters a = 8.140(1) Å; b = 5.175(1) Å; c = 7.802(1) Å and β = 94.387(1)°. Structures of AII(Sb0.5Cr0.5)(PO4)2 (AII = Sr, Pb) compounds are comparable, and both crystallize in a distorted yavapaiite structure with C2/c space group (Z = 4). Obtained monoclinic cell parameters are: a = 16.5038(2) Å; b = 5.1632(1) Å; c = 8.0410(1) Å; β = 115.85(1) for [SrSbCr] and a = 16.684(2) Å; b = 5.156(1) Å c = 8.115(1) Å; β = 115.35(1)° for [PbSbCr]. Infrared and Raman spectroscopic study was undertaken to provide information about vibrations bonds within the studied yavapaiite materials.

Full Text:



- G. Blasse, G.J. Dirksen, The luminescence of barium titanium phosphate BaTi(PO4)2, Chem. Phys. Lett., 1979, 62, 19–20.

- W.L. Zhang, C.S. Lin, Z.Z. He, H. Zhang, Z.Z. Luo, W.D. Cheng, Syntheses of three members of A(II)M(IV)(PO4)2: luminescence properties of PbGe(PO4)2 and its Eu3+-doped powders, Cryst. En. Comm., 2013, 15, 7089–7094.

- D. Zhao, F.X. Ma, H. Yang, W. Wei, Y.C. Fan, L. Zhang, X. Xin, Structure twinning, electronic and photoluminescence properties of yavapaiite-type orthophosphate BaTi(PO4)2, J. Phys. Chem. Solids, 2016, 99, 59–65.

- C.R. Miao, C.C. Torardi, A New High-Efficiency UV-Emitting X-ray Phosphor, BaHf1−xZrx(PO4)2, J. Solid State Chem., 2000, 155, 229–232.

- Y. Jiang, L. Wei, C. Xiyu, S. Ge, C. Lixin, G. Rongjie, Synthesis and luminescence of β-SrGe(PO4)2: RE (RE= Eu2+, Eu3+, Tb3+) phosphors for UV light-emitting diodes, J. Rare Earths, 2017, 35, 142–148.

- A.H. Abdeldaim, D.I. Badrtdinov, A.S. Gibbs, P. Manuel, H.C. Walker, M.D. Le, C.H. Wu, D. Wardecki, S.G. Eriksson, Y.O. Kvashnin, others, Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)2, Phys. Rev. B: Condens. Matter., 2019, 100, 214427.

- F. Tudorache, K. Popa, L. Mitoseriu, N. Lupu, D. Bregiroux, G. Wallez, Dielectric investigation of MIIMIV(PO4)2 double orthophosphates (MII=Ca, Sr, Ba, Pb; MIV=Ti, Zr, Hf, Ge, Sn),

J. Alloys Compd., 2011, 509, 9127–9132.

- K. Popa, R.J. M. Konings, P. Boulet, D. Bouëxière, A.F. Popa, The high-temperature behavior of barium zirconium diorthophosphate, Thermochim. Acta, 2005, 436, 51–55.

- K. Popa, R.J.M. Konings, T. Wiss, H. Leiste, Hydrothermal alteration of BaxMIV xCe2−2x (PO4)2 [MIV=Zr, Hf] as hosts for minor actinides,

J. Radioanal. Nucl. Chem., 2007, 273, 563–567.

- S. Neumeier, Y. Arinicheva, Y. Ji, J.M. Heuser, P.M. Kowalski, P. Kegler, H. Schlenz, D. Bosbach, G. Deissmann, New insights into phosphate based materials for the immobilisation of actinides, Radiochim Acta, 2017, 105, 961–984.

- A.J. Locock, Crystal chemistry of actinide phosphates and arsenates, In Structural Chemistry of Inorganic Actinide Compounds, Elsevier, 2007, 217–278.

- D. Bregiroux, K. Popa, G. Wallez, Crystal chemistry of MIIM′IV(PO4)2 double monophosphates, J. Solid State Chem., 2015, 230, 26–33.

- N. Clavier, R. Podor, N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc., 2011, 31, 941–976.

- D. Kitaev, Y.F. Volkov, A. Orlova, Orthophosphates of tetravalent Ce, Th, U, Np, and Pu with the monazite structure, Radiochemistry, 2004, 46, 211–217.

- A. Orlova, D. Kitaev, N. Kazantsev, S. Samoilov, V. Kurazhkovskaya, E. Vopilina, Double phosphates of Ce (IV) and some mono-and divalent elements: synthesis and crystal structure, Radiochemistry, 2002, 44, 326–331.

- A. Orlova, D. Kitaev, D. Kemenov, M. Orlova, G. Kazantsev, S. Samoilov, V. Kurazhkovskaya, Synthesis and Crystal-Chemical Properties of Phosphates BIIRIIIMIV(PO4)3 Containing f, d, and Alkaline-Earth Elements, Radiochemistry, 2003, 45, 103–109.

- R. Podor, M. Cuney, C.N. Trung, Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780 C and 200 MPa, Am. Mineral., 1995, 80, 1261–1268.

- K. Fukuda, A. Moriyama, T. Iwata, Crystal structure, phase transition, and anisotropic thermal expansion of barium zirconium diorthophosphate, BaZr(PO4)2, J. Solid State Chem., 2005, 178, 2144–2151.

- K. Popa, D. Bregiroux, R.J.M. Konings, T. Gouder, A.F. Popa, T. Geisler, P.E. Raison, The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry, J. Solid State Chem., 2007, 180, 2346–2355.

- K. Popa, G. Wallez, D. Bregiroux, P. Loiseau, MIIGe(PO4)2 (M=Ca, Sr, Ba): Crystal structure, phase transitions and thermal expansion, J. Solid State Chem., 2011, 184, 2629–2634.

- A. Leclaire, M. Barel, J. Chardon, B. Raveau, A Mo (IV) monophosphate, BaMo(PO4)2, with the yavapaiite layer structure, J. Solid State Chem., 1995, 116, 364–368.

- E. Morin, G. Wallez, S. Jaulmes, J.C. Couturier, M. Quarton, Structure of PbIISnIV(PO4)2: Stereochemical Activity of the Lead II Lone Pair, J. Solid State Chem., 1998, 137, 283–288.

- K. Fukuda, K. Fukutani, Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2, Powder Diffr., 2003, 18, 296–300.

- D. Zhao, H. Zhang, Z. Xie, W.L. Zhang, S.L. Yang, W.D. Cheng, Syntheses, crystal and electronic structures of compounds AM(PO4)2

(A = Sr, M = Ti, Sn; A = Ba, M = Sn), Dalton Trans., 2009, 5310–5318.

- A. Aatiq, R. Hassine, M.R. Tigha, I. Saadoune, Structures of two newly synthesized A0.50SbFe(PO4)3 (A= Mn, Cd) Nasicon phases, Powder Diffr., 2005, 20, 33–39.

- A. Aatiq, M.R. Tigha, R. Hassine, I. Saadoune, Crystallochemistry, and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases, Powder Diffr., 2006, 21, 45–51.

- A. Aatiq, M.R. Tigha, S. Benmokhtar, Structure, infrared, and Raman spectroscopic studies of new Sr0.50SbFe(PO4)3 and SrSb0.50Fe1.50(PO4)3 Nasicon phases, J. Mater. Sci., 2012, 47, 1354–1364.

- M. Varma, H. Poswal, S. Velaga, Pressure-induced phase transitions in BaZr(PO4)2 studied using x-ray diffraction, Raman spectroscopy, and first-principles calculations, J. Appl. Phys., 2020, 127, 135902.

- G. Wallez, D. Bregiroux, K. Popa, P.E. Raison, C. Apostolidis, P. Lindqvist-Reis, R.J.M. Konings, A.F. Popa, BaAnIV(PO4)2 (AnIV = Th, Np)-A New Family of Layered Double Phosphates, Eur. J. Inorg. Chem., 2011, 2011, 110–115.

- M. Keskar, B.G. Vats, R. Phatak, K. Krishnan, S.K. Sali, S. Kannan, Structural and thermal studies of SrU(PO4)2 and BaU(PO4)2, J. Alloys Compd., 2017, 725, 1199–1209.

- N. Sarukhanyan, L. Iskhakova, V. Trunov, Crystal structure of RbEu(SO4)2, Kristallografiya, 1983, 28, 452 456.

- K. Popa, G. Wallez, P.E. Raison, D. Bregiroux, C. Apostolidis, P. Lindqvist-Reis, R.J.M. Konings, SrNp(PO4)2 : an Original Ordered Modification of Cheralite, Inorg. Chem., 2010, 49, 6904–6908.

- A. Aatiq, M.R. Tigha, R. Fakhreddine, D. Bregiroux, G. Wallez, Structure, infrared and Raman spectroscopic studies of newly synthetic AII(SbV0.50FeIII0.50)(PO4)2 (A = Ba, Sr, Pb) phosphates with yavapaiite structure, Solid State Sci., 2016, 58, 44–54.

- R. Fakhreddine, A. Aatiq, Structure, Infrared and Raman spectroscopic studies of the new Ba(NbV0.5MIII0.5)(PO4)2 (MIII =Al, Cr, Fe, In) yavapaiite compounds ‘series, Mediterr. J. Chem., 2019, 8, 397 408.

- J. Rodriguez-Carvajal, Collected abstract of powder diffraction meeting, Toulouse Fr, 1990, 127.

- T. Roisnel, J. Rodríquez-Carvajal, WinPLOTR: a windows tool for powder diffraction pattern analysis, In Materials Science Forum, Transtec Publications, 1999, 378, 118–123.

- I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247.

- T. Hahn, U.Shmueli, J.W. Arthur, International Tables for Crystallography, Vol. A. space-group symmetry, D. Reidel Publ. Co., Dordrecht, Holland/Boston, Crystal Research and Technology, 1984, 1306.

- M.T. Paques-Ledent, AIIBIV(XO4)2 phosphates and arsenates with yavapaiite structure I: isostructural relationship and vibrational study,

J. Inorg. Nucl. Chem., 1977, 39, 11–17.

- L. Popović, D. de Waal, J.C.A. Boeyens, Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates, Journal Raman Spectroscopy, 2005, 36, 2-11.

- N. Anantharamulu, K.K. Rao, M. Vithal, G. Prasad, Preparation, characterization, impedance, and thermal expansion studies of Mn0.5MSb(PO4)3 (M = Al, Fe, and Cr), J. Alloys Compd., 2009, 479, 684–691.

- A. Aatiq, A. Marchoud, H. Bellefqih, M.R. Tigha, Structural, and Raman spectroscopic studies of the two M0.50SbFe(PO4)3 (M= Mg, Ni) NASICON phases, Powder Diffr., 2017, 32, S40–S51.

- M. Barj, G. Lucazeau, C. Delmas, Raman, and infrared spectra of some chromium Nasicon-type materials: short-range disorder characterization, J. Solid State Chem., 1992, 100, 141-150.



  • There are currently no refbacks.

Copyright (c) 2020 Mediterranean Journal of Chemistry