Cover Image

The theoretical description for the electrochemical determination of 4-4´-dihydroxyazobenzene, assisted by a composite of squaraine dye with cobalt (iii) oxyhydroxide in pair with cobalt (iv) oxide

Volodymyr Valentynovych Tkach, Marta V. Kushnir, Oleksandra V. Ahafonova, Mariia P. Mytchenok, Andrii V. Bocharov, Petro Ye. Kovalchuk, Sílvio C. De Oliveira, Petro I. Yagodynets, Zholt O. Kormosh, Lucinda Vaz dos Reis, Yulia L. Bredikhina, Yana G. Ivanushko, Yevgeniya V. Nazymok

Abstract


The theoretical description for 4-4´-dihydroxyazobenzene CoO(OH) – assisted electrochemical determination in the mushroom pulp, food, and biological liquids has been described. In this system, a squaraine dye is used as a Cobalt(III)oxyhydroxide stabilizer and electron transfer mediator. It is shown that, contrary to the large part of the systems with cobalt (III) oxyhydroxide, this system will behave more stably, providing an efficient diffusion-controlled process. On the other hand, the oscillatory and monotonic instabilities, although possible, are caused by the double electric layer influences of either chemical or electrochemical stage.


Full Text:

PDF

References


- K. Wisitrassameewong, S. C. Karunarathna, N. Thongklang R. Zhao, P. Callac, S. Moukha, C. Ferandon, E. Chukeatirote, K. D. Hyde, Agaricus subrufescens: a review, Saudi J. Biol. Sci., 2012, 19, 131–146.

- F. Firenzuoli, L. Gori, G. Lombardo, The Medicinal Mushroom Agaricus blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems, Evid. Based Compl. Alt. Med., 2008, 5, 3–15.

- A. Bhushan, M. Kulshreshtha, The Medicinal Mushroom Agaricus bisporus: Review of Phytopharmacology and Potential Role in the Treatment of Various Diseases, J. Nat. Sci. Med., 2018, 1, 4–9.

- E. S. Dias, C. Abe, R. Freitas Schwan, Truths and myths about the mushroom Agaricus blazei, Sci. Agric., 2004, 61, 545–549.

- M. Gill, R. Strauch, Constituents of Agaricus xanthodermus Genevier: The First Naturally Endogenous Azo Compound and Toxic Phenolic Metabolites, Z. Naturforschung, 1984, 39, 1027–1029.

- K. A. Graeme, Mycetism: A Review of the Recent Literature, J. Med. Toxicol., 2014, 10, 173–189.

- A. D. L. Lima, R. Costa Fortes, M. Garbi Novaes, S. Percário, Poisonous Mushrooms: A Review of the Most Common Intoxications, Nutr. Hosp., 2012, 27, 402–408.

- D. A. Ribeiro, D. G. Macedo, L. G. S. de Oliveira M. E. Saraiva, S. F. Oliveira, M. M. A. Souza, I. R. A. Menezes, Potencial terapêutico e uso de plantas medicinais em uma área de Caatinga no estado do Ceará, nordeste do Brasil, Rev. Bras. Plant. Med., 2014, 16, 912–930.

- F. S. Tian, Y. Chen, H. Liang, Determination of dobutamine hydrochloride by enzymatic catalytic spectrofluorimetry, Luminescence, 2014, 29, 92–95.

- D. A. F. Silva, M. L. Menezes, W. G. Kempinas, Desenvolvimento e validação de método analítico para determinação simultânea de catecolaminas em órgãos reprodutores de ratos por cromatografia líquida de alta eficiência com detecção electroquímica, Eclét. Quím., 2007, 32, 35–42.

- M. Sadikoglu, U. Soylu, S. Yilmaz, B. Selvi, H. Y. Seckin, A. Nosal-Wiercinska, Electrocatalytic oxidation of moxifloxacin hydrochloride on modified glassy carbon surface and determination in Avelox tablets, Bulg. Chem. Comm., 2019, 51, 125–133.

- K. Ahmad, P. Kumar, S. Mobin, A highly sensitive and selective hydroquinone sensor based on a newly designed N-rGO/SrZrO3 composite, Nanoscale Adv., 2020, 502–511.

- L. Scarpetta, A. Mariño, K. Bolaños Y. Leiva, P. Castiblanco, É. Nagles, Determinación de hidroquinona usando un electrodo de carbono vítreo modificado con quitosano, nanotubos de carbono de pared múltiple y líquido iónico, Rev. Colomb. Cien. Quím. Farm., 2015, 44, 311–322.

- J. B. Raoof, A. Kiani, R. Ojani, R. Valliolahi, Electrochemical Determination of Dopamine Using Banana-MWCNTs Modified Carbon Paste Electrode, Anal. Bioanal. Electrochem., 2011, 3, 59–66.

- M. Burç, Ö. Güngör, S. Titretir Duran, Voltammetric Determination of Curcumin in Spices using Platinum Electrode Electrochemically Modified with Poly (Vanillin-co-Caffeic Acid), Anal. Bioanal. Electrochem., 2020, 12, 625–643.

- M. S. Burke, M. G. Kast, L. Trotochaud A. M. Smith, S. W. Boettcher, Cobalt-iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism, J. Am. Chem. Soc., 2015, 137, 3638–3648.

- C. J. Raj, B. Ch. Kim, W. J. Cho S. Park, H. T. Jeong, K. Yoo, K. H. Yu, Rapid hydrothermal synthesis of cobalt oxyhydroxide nanorods for supercapacitor applications, J. Electroanal. Chem., 2015, 747, 130–136.

- M. Kang, H. Zhou, N. Zhao, B. Ly, Porous Co3O4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing, CrystEngComm., 2020, 22, 35–43.

- A. Stadnik, E. M. Caldas, A. Galli, F. J. Anaissi, Eletrodo modificado com [CoO(OH)] coloidal aplicado na detecção de ácido oxálico, Orbital. Elec. J. Chem., 2015, 7, 122–126.

- J. S. Bonini, F. Q. Mariani, E. Guimarães Castro, A.Galli, R. Marangoni, F. J. Anaissi, Partículas de CoO(OH) dispersas em pasta de carbono aplicado na eletrooxidação de compostos fenólicos, Orbital Elec. J. Chem., 2015, 7, 318–322.

- S. Tursynbolat, Y. Bakytkarim, J. Huang, L. Wang, Ultrasensitive Electrochemical Determination of Metronidazole Based on polydopamine/carboxylic Multi-Walled Carbon Nanotubes Nanocomposites Modified GCE, J. Pharm. Anal., 2018, 8, 124–128.

- H. Li, L. Zhang, Y. Mao, C. Wen, P. Zhao, A Simple Electrochemical Route to Access Amorphous Co-Ni Hydroxide for Non-Enzymatic Glucose Sensing, Nanoscale Res. Lett., 2019, 14, 135–143.

- Volodymyr V. Tkach, Marta V. Kushnir, Nataliia M. Storoshchuk, Volodymyr V. Parchenko, Ilona I. Aksyonova, Vira M. Odyntsova, Olga V. Luganska, and Petro I. Yagodynets, The Theoretical Description of Cathodic Deposition of New Conducting Polymer Composite, Assisted by a Perrhenate of a Novel Triazolic Derivative, Orbital: The Electronic Journal of Chemistry, 2020, 12(2),

DOI: http://dx.doi.org/10.17807/orbital.v12i2.1193.

- V.V. Tkach, Ya. G. Ivanushko, S.M. Lukanova, L. V. Romaniv, I. Kukovs’ka, S. C. de Oliveira, R. Ojani, F. J. Anaissi, P. I. Yagodynets, The Mathematical Description for CoO(OH)-Assisted Hydroxylamine Electrochemical Determination in Neutral Media, Iran. J. Chem. Chem. Eng., 2018, 37, 111–115.

- V.V. Tkach, Ya. G. Ivanushko, S. M. Lukanova et al., The mathematical description, assisted by CoO(OH) – Conducting Polymer Composite, Appl. J. Env. Eng. Sci., 2017, 3, 333–340.

- V.V. Tkach, L.V. Romaniv, S. M. Lukanova, S. C. de Oliveira, R. Ojani, F. J. Anaissi, P. I. Yagodynets,The possibility of nalbuphine CoO(OH)-assisted electrochemical detection and its mathematical description, Alb. J. Pharm. Sci., 2016, 3, 8–11.

- O. Stadnik, N. Ivanova, Y. Boldyrev, 218th Int. Electrochem. Soc. Meeting. Abstract # 2240, http://ma.ecsdl.org/content/MA2010-02/38/2240.full.pdf Accessed on the 8th of August 2015.

- O. Stadnik, Synthesis, Electrochemical and Photoelectrochemical Properties of the Oxide-hydroxide Compounds of Cobalt, Diss. Kand. Chim. N. Kyiv, 2011.




DOI: http://dx.doi.org/10.13171/mjc10602007011465vvt

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mediterranean Journal of Chemistry