Cover Image

Review: The Comparison of Clay Modifier (Cloisite Types) in Various Epoxy-Clay Nanocomposite Synthesis Methods

Muhammad Yunus Firdaus, Herlinda Octaviani, Humaira Herlini, Nurul Fatimah, Tika Mulyaningsih, Zachnaz Fairuuz, Asep Bayu Dani Nandiyanto


Nanocomposites are a new material discovery in the 21st century. One of the nanocomposite materials which are useful in life is epoxy-clay nanocomposites. Epoxy clay nanocomposites have a reasonably wide application in industrial fields such as aerospace, defense, automobile, etc. The purpose of writing this review is to conduct a literature review on mechanical properties in various Cloisite as a filler of Epoxy-clay Nanocomposites. There are several examples of cloisite, namely Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 30B, and Cloisite 93A. Cloisite has the advantage of producing mechanical properties, especially in the tensile modulus and strength, which is more increased than conventional reinforcing materials. These methods' synthesis results were then characterized using TEM, SEM, XRD, and other tests to determine their mechanical properties. The material parameters resulting from nanocomposites' synthesis are well seen from the high Tensile strength and modulus values. The highest increase in mechanical properties was found in the cloisite 93A by the ultrasonic synthesis method or mechanical stirring based on the study results.

Full Text:



- M. Shettar, U. Achutha Kini, S. S. Sharma, P. Hiremath, Study on Mechanical Characteristics of Nanoclay Reinforced Polymer Composites, Mater Today Proc., 2017, 4, 11158–11162.

- F. L. Jin, X. Li, S. J. Park, Synthesis and application of epoxy resins: A review, J Ind Eng Chem., 2015, 29, 1–11.

- A. Saikia, N. Karak, Castor oil-based epoxy/clay nanocomposite for advanced applications, Am J Eng Appl Sci., 2015, 9, 31–40.

- Z. Ahmadi, Epoxy in nanotechnology: A short review, Prog Org Coatings, 2019, 132, 445–448.

- S. Kumar, S. K. Samal, S. Mohanty, S. K. Nayak, Synthesis and Characterization of Nanoclay-Reinforced Trifunctional "Bioresin-Modified" Epoxy Blends Enhanced with Mechanical and Thermal Properties, ChemistrySelect, 2017, 2, 11445–11455.

- T. Ngo, Wet process and exfoliation of clay in epoxy, Korean Journal of Chemical Engineering, 2016, 33, 3550–3557.

- K. Jlassi, I. Krupa, M. M. Chehimi, Overview: Clay Preparation, Properties, Modification, Elsevier Inc., 2017. doi:10.1016/B978-0-323-46153-5.00001-X.

- R. Babu Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T. O. Varghese, An Overview of Polymer-Clay Nanocomposites, Elsevier Inc., 2017. doi:10.1016/B978-0-323-46153-5.00002-1.

- M. Bhattacharya, Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers, Materials (Basel), 2016, 9, 1–35.

- S. Ashhari, A. A. Sarabi, Effects of Organically Modified Nanoclay Particles on the Mechanical Properties of Aliphatic Polyurethane/Clay Nanocomposite Coatings, Polymer Composites, 2015, 47, 1-8.

- M. Karamane, M. Raihane, M. A. Tasdelen,

T. Uyar, M. Lahcini, M. Ilsouk, Y. Yagci, Preparation of fluorinated methacrylate/clay nanocomposite via in-situ polymerization: Characterization, structure, and properties, J Polym Sci Part A Polym Chem., 2017, 55, 411–418.

- M. Raji, M. E. M. Mekhzoum, A. K. Qaiss, R. Bouhfid, Nanoclay Modification and Functionalization for Nanocomposites Development: Effect on the Structural, Morphological, Mechanical, and Rheological Properties, Nanoclay Reinforced Polymer Composites, 2016, 1-34. doi:10.1007/978-981-10-1953-1_1.

- L. Zhu, L. Wang, Y. Xu, Chitosan and surfactant co-modified montmorillonite: A multifunctional adsorbent for contaminant removal, Appl Clay Sci., 2017, 146, 35–42.

- S. Ben Moshe, G. Rytwo, Thiamine-based organoclay for phenol removal from water, Appl Clay Sci., 2018, 155, 50–56.

- R. Khatem, R. Celis, M. C. Hermosín, Cationic and anionic clay nanoformulations of imazamox for minimizing environmental risk, Appl Clay Sci., 2019, 168, 106–115.

- Q. Beuguel, J. Ville, J. Crepin-Leblond, P. Mederic, T. Aubry, Influence of formulation on morphology and rheology of polypropylene/polyamide blends filled with nanoclay mineral particles, Appl Clay Sci., 2017, 147, 168–175.

- B. Adak, B. S. Butola, M. Joshi, Effect of organoclay-type and clay-polyurethane interaction chemistry for tuning the morphology, gas barrier, and mechanical properties of clay/polyurethane nanocomposites, Appl Clay Sci., 2018, 161, 343–353.

- B. Bhadran, D. Vijayan, N. George, C. S. Julie Chandra, P. M. Sabura Begum, R. Joseph, Reinforcing effect of organoclay in nitrile rubber - Effect of mill mixing and latex stage mixing, Appl Clay Sci., 2018, 165, 91–102.

- B. R. Prado, J. R. Bartoli, Synthesis and characterization of PMMA and organic modified montmorillonites nanocomposites via in situ polymerization assisted by sonication, Appl Clay Sci., 2018, 160, 132–143.

- C. Muñoz-Shugulí, F. J. Rodríguez, J. E. Bruna, M. J. Galotto, C. Sarantópoulos, M. A. Favaro Perez, M. Padula, Cetylpyridinium bromide-modified montmorillonite as filler in low density polyethylene nanocomposite films, Appl Clay Sci., 2019, 168, 203–210.

- T. D. Ngo, M. T. Ton-That, Wet process and exfoliation of clay in epoxy, Korean J Chem Eng., 2016, 33, 3550–3557.

- F. Javanbakht, B. Razavi, M. Salami-Kalajahi, H. Roghani-Mamaqani, M. Ommati, Fabrication of high thermal stable cured novolac/Cloisite 30B nanocomposites by chemical modification of resin structure, Polym Adv Technol., 2020, 31, 226–232.

- T. Nakato, Y. Nakano, E. Mouri, Effects of the sol-gel transition of clay colloids on the spectroscopic behavior of cationic dye adsorbed on the clay particles, Appl Clay Sci., 2015, 118, 29–37.

- W. Wang, F. Wang, Y. Kang, A. Wang, Enhanced Adsorptive Removal of Methylene Blue from Aqueous Solution by alkali-activated Palygorskite, Water Air Soil Pollut., 2015, 226, 1-13. doi:10.1007/s11270-015-2355-0.

- M. Irani, M. Fan, H. Ismail, A. Tuwati, B. Dutcher, A. G. Russell, Modified nanosepiolite as inexpensive support of tetraethylenepentamine for CO2 sorption, Nano Energy, 2015, 11, 235–246.

- O. Zabihi, M. Ahmadi, S. Nikafshar, K. Chandrakumar Preyeswary, M. Naebe, A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber-reinforced composites, Compos Part B Eng., 2018, 135, 1–24.

- P. Mathivanan, S. Thiugnanam, Study on the Mechanical Characteristics of hybrid metal-fiber panels with resin-Cloisite 10A Mixture, International of Applied Engineering Research, 2018, 13, 16548–16551.

- H. Salam, Y. Dong, I. J. Davies, A. Pramanik, Optimization of material formulation and processing parameters in relation to mechanical properties of bioepoxy/clay nanocomposites using Taguchi design of experiments, J Appl Polym Sci., 2018, 135, 1–18.

- K. Singh, T. Nanda, R. Mehta, Compatibilization of polypropylene fibers in epoxy-based GFRP/clay nanocomposites for improved impact strength, Compos Part A Appl Sci Manuf., 2017, 98, 207–217.

- K. Singh, T. Nanda, R. Mehta, Addition of nanoclay and compatibilized EPDM rubber for improved impact strength of epoxy glass fiber composites, Compos Part A Appl Sci Manuf., 2017, 103, 263–271.

- B. Sharma, R. Chhibber, R. Mehta, Effect of surface treatment of nanoclay on the mechanical properties of epoxy/glass fiber/clay nanocomposites, Compos Interfaces, 2016, 23, 623–640.

- S. Ramakrishnan, K. Krishnamurthy, R. Rajasekar, G. Rajeshkumar, An experimental study on the effect of nano-clay addition on mechanical and water absorption behavior of jute fiber reinforced epoxy composites, J Ind Text., 2019, 49, 597–620.

- N. Merah, O. Mohamed, Nanoclay and water uptake effects on mechanical properties of unsaturated polyester, J Nanomater, 2019, 2019, 1-12. doi:10.1155/2019/8130419.

- M. S. Senthil Kumar, N. M. Sundara Raju, P. S. Sampath, M. C. P. Selvan, Influence of Nanoclay on Mechanical and Thermal Properties of Glass Fiber Reinforced Polymer Nanocomposites, Polymer Composite, 2016, 1-8.

- M. S. Senthil Kumar, C. Pon Selvan, P. S. Sampath, K. Raja, R. Nair, Enhanced Mechanical Properties of Glass Fiber/Epoxy Composites using Nanoclay, Adv Sci Eng Technol Int Conf ASET, 2019, 1–9.

- M. Sharifi, M. Ebrahimi, S. Jafarifard, Preparation and characterization of a high-performance powder coating based on epoxy/clay nanocomposite, Prog Org Coatings, 2017, 106, 69–76.

- R. Mustapha, A. Razak Rahmat, R. Abdul Majid, S. Noor Hidayah Mustapha, Mechanical and Thermal Properties of Montmorillonite Nanoclay Reinforced Epoxy Resin with Bio-Based Hardener, Mater Today Proc., 2018, 5, 21964–21972

- M. S. Cabezudo, M. G. Prolongo, C. Salom, M. A. Garcia del Cid, R. M. Masegosa, Ternary Nanocomposites: Curing, Morphology, and Mechanical Properties, Polym Compt., 2015, 1-12.

- S. Kumar, S. Mohanty, S. K. Nayak, Nanocomposites of epoxidized soybean oil (ESO)-based epoxy (DGEBA) blends and clay platelets: cured with methyl-hexahydro phthalic anhydride crosslinker, J Macromol Sci Part A Pure Appl Chem., 2020, 57, 654–662.

- R. Jeyakumar, P. S. Sampath, R. Ramamoorthi, T. Ramakrishnan, Structural, morphological and mechanical behavior of glass fibre reinforced epoxy nanoclay composites, Int J Adv Manuf Technol., 2017, 93, 527–535.

- A. A. Javidparvar, R. Naderi, B. Ramezanzadeh, Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection, Compos Part B Eng., 2019, 172, 363–375.

- D. V. Amaral Ceretti, L. C. Escobar da Silva, M. do Carmo Gonçalves, D. J. Carastan, The Role of Dispersion Technique and Type of Clay on the Mechanical Properties of Clay/Epoxy Composites, Macromol Symp., 2019, 383, 1–10.

- M. M. Ansari, A. Chakrabarti, Impact behavior of GFRP and Kevlar/epoxy sandwich composite plate: Experimental and FE analyses, J Mech Sci Technol., 2017, 31, 771–776.

- D. Dhanapal, A. K. Srinivasan, N. Ramalingam, Role of POSS as Coupling Agent for DGEBA/GF Reinforced Nanocomposites, Silicon, 2018, 10, 537–546.

- S. Jahandideh, M. J. S. Shirazi, M. Tavakoli, Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites, Fibers Polym., 2017, 18, 1995–2004.

- D. J. Kwon, P. S. Shin, J. H. Kim, Y. M. Baek, H. S. Park, K. L. DeVries, J. M. Park, Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles, Compos Part B Eng., 2017, 130, 46–53.

- J. J. Lee, I. Nam, H. Kim, Thermal stability and physical properties of epoxy composite reinforced with silane treated basalt fiber, Fibers Polym., 2017, 18, 140–147.

- S. Safi, A. Zadhoush, M. Ahmadi, S. P. R. Tehrani, Hybrid silane-treated glass fabric/epoxy composites: tensile properties by micromechanical approach, Iran Polym J., 2018, 27. doi:10.1007/s13726-017-0578-1.

- T. Nanda, K. Singh, D. Shelly, R. Mehta, Advancements in multi-scale filler reinforced epoxy nanocomposites for improved impact strength: A review, Crit Rev Solid State Mater Sci., 2020, 1–49.

- R. K. Prusty, D. K. Rathore, B. C. Ray, CNT/polymer interface in polymeric composites and its sensitivity study at different environments, Adv Colloid Interface Sci., 2017, 240, 77–106.

- G. Mittal, K. Y. Rhee, V. Mišković-Stanković, D. Hui, Reinforcements in multi-scale polymer composites: Processing, properties, and applications, Compos Part B Eng., 2018, 138, 122–139.

- N. G. Ozdemir, T. Zhang, I. Aspin, F. Scarpa,

H. Hadavinia, Y. Song, Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications, Express Polym Lett., 2016, 10, 394–407.

- K. Leelachai, P. Kongkachuichay, P. Dittanet, Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber, J Polym Res., 2017, 24. doi:10.1007/s10965-017-1202-y.

- T. Nanda, G. Sharma, R. Mehta, D. Shelly, K. Singh, Mechanisms for enhanced impact strength of epoxy-based nanocomposites reinforced with silicate platelets, Mater Res Express., 2019, 6. doi:10.1088/2053-1591/ab1023.

- D. J. Daniel, K. Panneerselvam, Mechanical and Thermal Behaviour of Polypropylene/Cloisite 30B/Elvaloy AC 3427 Nanocomposites Processed by Melt Intercalation Method, Trans Indian Inst Met., 2017, 70, 1131–1138.

- N. Ibrahim, M. Jollands, R. Parthasarathy, Mechanical and thermal properties of melt-processed PLA/organoclay nanocomposites, IOP Conf Ser Mater Sci Eng., 2017, 191. doi:10.1088/1757-899X/191/1/012005.

- L. Kabalan, M. M. Zagho, M. J. Al-Marri, M. M. Khader, Experimental and theoretical studies on the mechanical and structural changes imposed by the variation of clay loading on poly(vinyl alcohol)/cloisite® 93A nanocomposites, J Vinyl Addit Technol., 2019, 25, 172–181.

- J. Guo, J. Long, D. Ding, Q. Wang, Y. Shan, A. Umar, X. Zhang, B. L. Weeks, S. Wei, Z. Guo, Significantly enhanced mechanical and electrical properties of epoxy nanocomposites reinforced with low loading of polyaniline nanoparticles, RSC Adv., 2016, 6, 21187–21192.

- H. Gu, J. Guo, H. Wei, X. Yan, D. Ding, X. Zhang, Q. He, S. Tadakamalla, X. Wang, T. C. Ho, S. Wei, Z. Guo, Transparent anhydride-cured epoxy nanocomposites reinforced with polyaniline stabilized nanosilica, J Mater Chem C, 2015, 3, 8152–8165.

- H. Gu, C. Ma, J. Gu, J. Guo, X. Yan, J. Huang, Q. Zhang, Z. Guo, An overview of multifunctional epoxy nanocomposites, J Mater Chem C, 2016, 4, 5890–5906.

- H. Gu, J. Guo, H. Wei, S. Guo, J. Liu, Y. Huang, M. A. Khan, X. Wang, D. P. Young, S. Wei, Z. Guo, Strengthened Magnetoresistive Epoxy Nanocomposite Papers Derived from Synergistic Nanomagnetite-Carbon Nanofiber Nanohybrids, Adv Mater., 2015, 27, 6277–6282.

- F. Naya, C. González, C. S. Lopes, S. Van der Veen, F. Pons, Computational micromechanics of the transverse and shear behavior of unidirectional fiber-reinforced polymers including environmental effects, Compos Part A Appl Sci Manuf., 2017, 92, 146–157.

- E. G. Koricho, A. Khomenko, M. Haq, L. T. Drzal, G. Belingardi, B. Martorana, Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite, Compos Struct., 2015, 134, 789–798.

- S. Awang Ngah, A. C. Taylor, Toughening performance of glass fibre composites with core-shell rubber and silica nanoparticle modified matrices, Compos Part A Appl Sci Manuf., 2016, 80, 292–303.

- S. X. Peng, S. Shrestha, Y. Yoo, J. P. Youngblood, Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface-modified cellulose nanocrystals, Polymer, 2017, 112, 359–368.

- J. Seaglar, C. E. Rousseau, Compressive evaluation of homogeneous and graded epoxy-glass particulate composites, Mater Sci Eng C, 2015, 49, 727–734.

- D. Flore, K. Wegener, D. Seel, C. C. Oetting, T. Bublat, Investigation of chemical ageing and its effect on static and fatigue strength of continuous fibre reinforced plastics, Compos Part A Appl Sci Manuf., 2016, 90, 359–370.

- Y. Tian, H. Zhang, J. Zhao, T. Li, B. X. Bie, S. N. Luo, Z. Zhang, High strain rate compression of epoxy-based nanocomposites, Compos Part A Appl Sci Manuf., 2016, 90, 62–70.

- G. J. Withers, Y. Yu, V. N. Khabashesku, L. Cercone, V. G. Hadjiev, J. M. Souza, D. C. Davis, Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organomodified nanoclays, Compos Part B Eng., 2015, 72, 175–182.

- M. Garg, S. Sharma, R. Mehta, Pristine and amino-functionalized carbon nanotubes reinforced glass fiber epoxy composites, Compos Part A Appl Sci Manuf., 2015, 76, 92–101.

- L. Bazli, A. Khavandi, M. A. Boutorabi, M. Karrabi, Correlation between viscoelastic behavior and morphology of nanocomposites based on SR/EPDM blends compatibilized by maleic anhydride, Polymer, 2017, 113, 156–166.

- X. Wu, H. Liu, Z. Tang, B. Guo, Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding, Compos Sci Technol., 2016, 123, 179–186.

- G. Bishwa Bidita Varadwaj, K. Parida, V. O. Nyamori, Transforming inorganic layered montmorillonite into inorganic-organic hybrid materials for various applications: A brief overview, Inorg Chem Front., 2016, 3,


- M. Garg, S. Sharma, R. Mehta, Processing of Functionalized and Pristine Carbon Nanotube Epoxy Composites with Silane-Treated Glass Fiber, Mater Manuf Process., 2016, 31, 2044–2056.

- B. Koohestani, I. Ganetri, E. Yilmaz, Effects of silane-modified minerals on mechanical, microstructural, thermal, and rheological properties of wood-plastic composites, Compos Part B Eng., 2017, 111, 103–111.

- S. Palraj, M. Selvaraj, K. Maruthan, G. Rajagopal, Corrosion and wear resistance behavior of nano-silica epoxy composite coatings, Prog Org Coatings, 2015, 81, 132–139.

- S. K. Srivastava, Y. K. Mishra, Nanocarbon reinforced rubber nanocomposites: Detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects, Nanomaterials, 2018, 8, 1–56.

- T. A. Nguyen, H. Nguyen, T. V. Nguyen, H. Thai, X. Shi, Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings, J Nanosci Nanotechnol, 2016, 16, 9874–9881.

- M. D. Tomić, B. Dunjić, J. B. Bajat, V. Likić, J. Rogan, J. Djonlagić, Anticorrosive epoxy/clay nanocomposite coatings: rheological and protective properties, J Coatings Technol Res., 2016, 13, 439–456.

- M. K. Madhup, N. K. Shah, N. R. Parekh, Investigation and improvement of abrasion resistance, water vapor barrier and anticorrosion properties of mixed clay epoxy nanocomposite coating, Prog Org Coatings, 2017, 102, 186–193.

- K. Deepak, S. V. P. Vattikuti, B. Venkatesh, Experimental Investigation of Jute FiberReinforcedNano Clay Composite, Procedia Mater Sci., 2015, 10, 238–242.

- H. Abdellaoui, H. Bensalah, M. Raji, D. Rodrigue, R. Bouhfid, A. el Kacem Qaiss, Laminated Epoxy Biocomposites Based on Clay and Jute Fibers, J Bionic Eng., 2017, 14, 379–389.

- G. Daniel, B. Richard, A. Mckee, Dive into Deep Learning, J Chem Inf Model, 2019, 53,1689–1699.

- M. Kosari, S. M. A. Mousavian, S. M. Razavi, S. J. Ahmadi, M. Izadipanah, Polyurethane/clay nanocomposites reinforced with carbon and glass fibres: study of mechanical and thermal properties, and the effect of electron beam irradiation, Plast Rubber Compos, 2017, 46,


- H. Suryanto, Biokomposit Starch-Nanoclay: Sintesis dan Karakterisasi, Universitas Negeri Malang, 2019, 1-123.

- G. Sivanarutchelvan, V. Ramachandran, High strain rate sensitivity of glass/epoxy/clay nanocomposites, 10th international conference on composite and technology, 2016, 1-12.

- H. Salam, Y. Dong, Property evaluation and material characterization of soybean oil-modified bioepoxy/clay nanocomposites for environmental sustainability, Mater Today Sustain, 2019, 5,


- C. A. Uwa, E. R. Sadiku, T. Jamiru, Z. Huan, Effect of Cloisite® 20A Reinforced Polypropylene Nanocomposite for Thermal Insulation, IEEE 10th Int Conf Mech Intell Manuf Technol ICMIMT 2019, 2019, 5–9.

- S. S. Chee, dan M. Jawaid, The Effect of Bi-Functionalized MMT on Morphology Thermal Stability, Dynamic Mechanical, and Tensile Properties of Epoxy/Organoclay Nanocomposites, Polymers, 2019, 11, 1-18.

- M. Zappalorto, A. Pontefisso, A. Fabrizi, M. Quaresimin, Mechanical behaviour of epoxy/silica nanocomposites: Experiments and modelling, Compos Part A Appl Sci Manuf., 2015, 72, 58–64.

- A. Dehghan, M. J. Zohuriaan-Mehr, A. Salimi, Rapid preparation of epoxy acrylate-clay nanocomposite: Simultaneous acrylation/nanoclay dispersion under ultrasonication, Prog Org Coatings, 2017, 108, 44–50.

- M. Tomić, B. Dunjić, M. S. Nikolić, J. Maletaškić, V. B. Pavlović, J. Bajat, J. Djonlagić, Dispersion efficiency of montmorillonites in epoxy nanocomposites using solution intercalation and direct mixing methods, Appl Clay Sci., 2018, 154, 52–63.

- A. Samariha, A. H. Hemmasi, I. Ghasemi, B. Bazyar, M. Nemati, Effect of nanoclay contents on properties of bagasse flour/reprocessed high-density polyethylene/nanoclay composites, Maderas Cienc y Tecnol., 2015, 17, 637–646.

- H. Salam, Y. Dong, I. Davies, Development of biobased polymer/clay nanocomposites: A critical review, Fillers and reinforcements for advanced nanocomposites. Woodhead Publishing, 2015,101-132. doi:10.1016/B978-0-08-100079-3.00006-5.

- M. Dagmar, T. Alice, K. Alena, Polyethylene/Ethylene Vinyl Acetate and Ethylene Octene Copolymer/Clay Nanocomposite Films: Different Processing Conditions and Their Effect on Properties, Polym Eng Sci., 2019, 59, 2514–2521.

- A. Rafiq, N. Merah, R. Boukhili, M. Al-Qadhi, Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite, Polym Test., 2017, 57, 1–11.

- R. S. Chen, S. Ahmad, S. Gan, Characterization of recycled thermoplastics-based nanocomposites: Polymer-clay compatibility, blending procedure, processing condition, and clay content effects, Compos Part B Eng., 2017, 131, 91–99.

- E. Avazverdi, M. Vandalvand, S. A. Javadinia, A. Shakeri, Evaluation of the Effect of Clay Nanoparticles on Mechanical Properties of Recycled Polyethylene, Prog Rubber, Plast Recycl Technol., 2016, 32, 99–110.

- P. P. Binu, K. E. George, M. N. Vinodkumar, Effect of Nanoclay, Cloisite 15A on the Mechanical Properties and Thermal Behavior of

Glass Fiber Reinforced Polyester, Procedia Technol., 2016, 25, 846–853.

-H. Salam, Y. Dong, I. J. Davies, A. Pramanik, The effects of material formulation and manufacturing process on mechanical and thermal properties of epoxy/clay nanocomposites, 2016. doi:10.1007/s00170-016-8572-x.

-C. Wang, X. Gao, Y. Li, Mechanical Properties Improvement of Nanoclay Addition Epoxy 3D Orthogonal Woven Composite Material, Fibers Polym., 2019, 20, 1495–1503.



  • There are currently no refbacks.

Copyright (c) 2021 Mediterranean Journal of Chemistry