Cover Image

Electrochemical behavior of paracetamol on Thermally Prepared Ti/Ta2O5/50Pt-50RuO2 Electrode

Mohamed Berté, Gnamba Corneil Quand-même, Kambiré Ollo, Sadia Sahi Placide, Koffi Konan Sylvestre, Ouattara lassiné

Abstract


Paracetamol (PCM), one of the most consumed drugs globally, is found in the environment, domestic wastewater, and hospital wastewater. Our objective is to electrochemically oxidize paracetamol using a ruthenium dioxide modified platinum electrode (Ti/Ta2O5/50Pt-50RuO2). This study was carried out using physical characterization (Scanning electron micrographs) and interpretation of cyclic voltammograms. Platinum (Ti/Ta2O5/Pt), ruthenium dioxide (Ti/Ta2O5/RuO2), and platinum – ruthenium dioxide (Ti/Ta2O5/50Pt-50RuO2) electrodes have been prepared thermally at 400°C on sandblasted titanium modified Ta2O5 substrate. The scanning electron micrographs characterization showed that Ti/Ta2O5/50Pt-50RuO2 electrode surfaces contain Pt and RuO2. The surfaces of Ti/Ta2O5/Pt and Ti/Ta2O5/RuO2 electrodes contain Pt and RuO2, respectively.  This work shows that PCM degradation was possible on Ti/Ta2O5/50Pt-50RuO2 electrode with the faradic current on the voltammograms presence. In comparison to Ti/Ta2O5/Pt and Ti/Ta2O5/RuO2 electrodes, this study showed that Ti/Ta2O5/50Pt-50RuO2 electrode was more electrocatalytic for PCM electrooxidation. These results indicate that PCM degradation on this electrode can occur either by indirect catalytic oxidation involving adsorbed hydroxyl radicals or other oxidizing species produced in situ or by direct electron transfer to the electrode surface.. The analysis of the peak currents and the peak potentials has revealed that the PCM electrooxidation process on this electrode attested to an irreversible character. Finally, the results proved that paracetamol electrooxidation on Ti/Ta2O5/50Pt-50RuO2 electrode is associated with mixed control adsorption-diffusion. Oxidation proceeds by adsorption, then the transfer of two electrons to the electrode surface and a chemical transformation. The investigated process proceeded according to the EC mechanism.


Full Text:

PDF

References


- S. Chen, P. He, P. Zhou, X. Wang, F. Xiao, Q. He, J. Li, L. Jia, H. Zhang, B. Jia, B. Tang, Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO2 anode for electrocatalytic degradation of acetaminophen, Chemosphere, 2021, 271, 129830.

- N. Fernandez-Saez, D.E. Villela-Martinez, F. Carrasco-Marin, A.F. Perez-Cadenas, L.M. Pastrana-Martinez, Heteroatom-doped graphene aerogels and carbon-magnetite catalysts for the heterogeneous electro-Fenton degradation of acetaminophen in aqueous solution, J. Catal., 2019, 378, 68 – 79.

- A. Asghari, M. Ameri, A.A. Ziarati, S. Radmannia, A. Amoozadeh, B. Barfi, L. Boutorabi, Electro-oxidation of paracetamol in the presence of malononitrile: Application for green, efficient, none-catalyst, simple and one-pot electro-synthesis of new paracetamols, Chinese Chemical Letters, 2015, 26(6), 681-684.

- D.R. Mehlisch, The efficacy of combination analgesic therapy in relieving dental pain, J. Am. Dent. Assoc., 2002, 133(7), 861-871.

- M. Berté, F.T.A. Appia, I. Sanogo, L. Ouattara, Electrochemical Oxidation of the Paracetamol in its Commercial Formulation on Platinum and Ruthenium Dioxide Electrodes, Int. J. Electrochem. Sci., 2016, 11, 7736–7749.

- S. S. Al-Obaidy, A. L. W. Po, P. J. McKiernan, J. F. T. Glasgow, J. Millership, Assay of paracetamol and its metabolites in urine, plasma and saliva of children with chronic liver disease, Journal of Pharmaceutical and Biomedical Analysis, 1995, 13(8), 1033-1039

- A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco-Amador, R. Segura-Cruz, Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters, Sustainability, 2019, 11(9), 2672;

- W. Koagouw, Z. Arifin, G.W.J. Olivier, C. Ciocan, High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia, Marine Pollution Bulletin, 2021, 169, 112558.

- E.S. Fisher, S.C. Curry, Evaluation and treatment of acetaminophen toxicity, Advances in Pharmacology, 2019, 85, 263-272.

- C.Q. Tan, N.Y. Gao, S.Q. Zhou, Y.L. Xiao, Z.Z. Zhuang, Kinetic study of acetaminophen degradation by UV-based advanced oxidation processes, Chem. Eng. J., 2014, 253, 229 – 236.

- A. Gomez-Aviles, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belve, Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modeling, Chem. Eng. J., 2021, 404, 126601.

- B. Parisa, M. Gholamreza, The accelerated biodegradation and mineralization of acetaminophen in the H2O2-stimulated upflow fixed-bed bioreactor (UFBR), Chemosphere, 2018, 210, 1115 – 1123.

- P. Amouzgar, E.S. Chan, B. Salamatinia, Effects of ultrasound on development of Cs/NAC nano composite beads through extrusion dripping for acetaminophen removal from aqueous solution, J. Clean. Prod., 2017, 165, 537 – 551.

- H.N.P. Vo, G.K. Le, T.M.H. Nguyen, X.T. Bui, K.H. Nguyen, E.R. Rene, T.D.H. Vo, N.D.T. Cao, R. Mohan, Acetaminophen micropollutant: historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments, Chemosphere, 2019, 236, 124391.

- R.Q. Mei, Q.P. Wei, C.W. Zhu, W.T. Ye, B. Zhou, L. Ma, Z.M. Yu, K.C. Zhou, 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: a high-efficiency electrochemical degradation of RB-19 dye wastewater under low current, Appl. Catal. B Environ., 2019, 245, 420 – 427.

- S.X. Chen, L.H. Zhou, T.T. Yang, Q.H. He, P.C. Zhou, P. He, F.Q. Dong, H. Zhang, B. Jia, Thermal decomposition based fabrication of dimensionally stable Ti/SnO2-RuO2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green, Chemosphere, 2020, 261, 128201.

- J. Lei, Z. Xu, X. Yuan, H. Xu, D. Qiao, Z. Liao, W. Yan, Y. Wang, Linear attenuation current input mode: a novel power supply mode for electrochemicaloxidation process. J. Water Process Eng., 2020, 36(11), 101305.

- S.X. Chen, P. He, X.J. Wang, F. Xiao, P.C. Zhou, Q.H. He, L.P. Jia, F.Q. Dong, H. Zhang, B. Jia, H.T. Liu, B. Tang, Co/Sm-modified Ti/PbO2 anode for atrazine degradation: effective electrocatalytic performance and degradation mechanism, Chemosphere, 2021, 268,128799.

- G.D.S. Santos, V.M. Vasconcelos, R.S. da Silva, M.A. Rodrigo, K.I.B. Eguiluz, G.R. Salazar-Banda, New laser-based method for the synthesis of stable and active Ti/SnO2-Sb anodes, Electrochim. Acta, 2020, 332, 135478.

- O. Kambire, L.A.G. Pohan, F.T.A. Appia, L. Ouattara, Anodic Oxidation of Chlorides on Platinum Modified by Metallic Oxides, Int. J. Pure Appl. Sci. Technol., 2015, 27(1), 27-43.

- L.A.G. Pohan, O. Kambiré, M. Berté, L. Ouattara, Study of lifetime of Platinum Modified Metal Oxides Electrodes, Int. J. Biol. Chem. Sci., 2020, 14(4), 1479-1488.

- L. Yi, Y. Song, W. Yi, X. Wang, H. Wang, P. He, B. Hu, Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells, International Journal of Hydrogen Energy, 2011, 36, 11512-11518.

- A.L.G. Pohan, L. Ouattara, K.H. Kondro, O. Kambiré, A. Trokourey, Electrochemical Treatment of the Wastewaters of Abidjan on Thermally Prepared Platinum Modified Metal Oxides Electrodes, European Journal of Scientific Research, 2013, 94 (1), 96-108.

- O. Kambire, L.A.G. Pohan, F.T.A. Appia, C.Q.-M. Gnamba, K.H. Kondro, L. Ouattara, Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes, J. Electrochem. Sci. Eng., 2015, 5(2), 79-91.

- Y. Takasu, S. Onoue, K. Kameyama, Y. Murakami, and K. Yahikozawa, Preparation of ultrafine RuO2-IrO2-TiO2 oxide particles by a sol—gel process, Electrochimica Acta, 1994, 39 (13), 1993-1997

- O. Kambiré, L.A.G. Pohan, S.P. Sadia, K.E. Kouadio, L. Ouattara, Voltammetric study of formic acid oxidation via active chlorine on IrO2/Ti and RuO2/Ti electrodes, Mediterranean Journal of Chemistry, 2020, 10(8), 799-808.

- B. Kouakou, L. Ouattara, A. Trokourey, Y. Bokra, Characterization of Thermal Prepared Platinized Tin Dioxide Electrodes: Application to Methanol Electro-Oxidation, Journal of Applied Sciences and Environmental Management, 2008, 12, 103 – 110.

- G. Foti, D. Gandini, C. Comninellis, Anodic oxidation of organics on thermally prepared oxide electrodes, Current Topics in Electrochemistry, 1997, 5, 71 – 91.

- S. Kumar, S. Singh, V.C. Srivastava, Electro-oxidation of nitrophenol by ruthenium oxide coated titanium electrode: Parametric, kinetic and mechanistic study, Chemical Engineering Journal, 2015, 263, 135 – 143.

- O. Kambiré, Lemeyonouin A. G. Pohan, Konan H. Kondro, L. Ouattara, Study of oxygen evolution reaction on thermally prepared xPtOy-(100-x)IrO2 electrodes, J. Electrochem. Sci. Eng. 2020, 10(4),347-360.

- O. Kambiré, L.A.G. Pohan, Y.U. Kouakou, K.J. Kimou, K.S. Koffi, K.E. Kouadio, L. Ouattara, Influence of the coupling of IrO2 and PtOx on the charging/discharging process at the electrode/electrolytic solution interface, International Journal of Innovation and Applied Studies, 2020, 31(3), 655-667.

- E. Wudarska, E. Chrzescijanska, E. Kusmierek, J. Rynkowski, Voltammetric study of the behaviour of N-acetyl-p-aminophenol in aqueous solutions at a platinum electrode, Comptes Rendus Chimie, 2015, 18, 993 – 1000.

- E. Wudarska, E. Chrzescijanska, E. Kusmierek, Electroreduction of Salicylic Acid, Acetylsalicylic Acid and Pharmaceutical Products Containing these Compounds, Portugaliae Electrochimica Acta, 2014, 32, 295 – 302.

- N.P. Shetti, D.S. Nayak, S.D. Bukkitgar, Electrooxidation of antihistamine drug methdilazine and its analysis in human urine and blood samples, Cogent Chemistry, 2016, 2, 1 – 13.

- A. Masek, E. Chrzescijanska, Effect of UV-A Irradiation and Temperature on the Antioxidant Activity of Quercetin Studied Using ABTS, DPPH and Electrochemistry Methods, International Journal of Electrochemical Science, 2015, 10, 5276 – 5290.

- E. Wudarska, E. Chrzescijanska, E. Kusmierek, J. Rynkowski, Electrochemical Behavior of 2-(p-isobutylphenyl)propionic Acid at Platinum Electrode, International Journal of Electrochemical Science, 2015, 10, 9433 – 9442.

- D. Kaviani, M. Saghi, M. A. Mohammadi, M. H. Bigtan, Studying the Electrochemical Behavior of 2-amino-4-methylphenol in the Presence of Penicillin Amine Using Cyclic Voltammetry Technique, Journal of Physical Chemistry and Electrochemistry, 2014, 2, 149 – 154.

- H. Yina, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior and voltametric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode, Electrochimica Acta, 2010, 55, 7102 – 7108.

- H. Yaghoubian, H. Beitollah, V. Soltani-Nejad, A. Mohadesi, D. Afzali, H. Zamani, S. Roodsaz, Simultaneous Voltammetric Determination of Epinephrine and Acetaminophene at the Surface of Modified Carbon Nanotube Paste Electrode, International Journal of Electrochemical Science, 2011, 6, 1307 – 1316.

- M. Mazloum-Ardakani, Z. Taleat, Investigation of Electrochemistry Behavior of Hydroxylamine at Glassy Carbon Electrode by Indigocarmine, International Journal of Electrochemical Science, 2009, 4, 694 – 706.

- A. K. Timbola, C. D. Souza, C. Soldi, M. G. Pizzolatti, A. Spinelli, Electro-oxidation of rutin in the presence of p-toluenesulfinic acid, Journal of Applied Electrochemistry, 2007, 37, 617 – 624.

- E. Chrzescijanska, E. Wudarska, E. Kusmierek, J. Rynkowski, Study of acetylsalicylic acid electroreduction behavior at platinum electrode, Journal of Electroanalytical Chemistry, 2014, 713, 17 – 21.

- E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101, 19 – 28.

- C. Comninellis, C. Pulgarin, Anodic oxidation of phenol for wastewater treatment, Journal of Applied Electrochemistry, 1991, 21, 703 – 708.




DOI: http://dx.doi.org/10.13171/mjc02205131627berté-lassiné

Copyright (c) 2022 Mediterranean Journal of Chemistry