Cover Image

Synthesis, structural characterization and ionic conductivity of mixed alkali titanium phosphate glasses

Fatima Ezzahraa Dardar, Michael Gross, Saida Krimi, Michel Couzi, Abdessadek Lachgar, Said Sebti, Abdelaziz El Jazouli


Glasses with formula Na3-xLixCaTi(PO4)3 [10(3-x) mol. % Na2O - 10x mol. % Li2O - 20 mol. % CaO - 20 mol. % TiO2 - 30 mol. % P2O5] (0 ≤ x ≤ 3) were prepared by standard melt-quenching technique, and their structural and physical properties were characterized by thermal analysis, density measurements, Raman, and impedance spectroscopy. When Na+ is gradually replaced by Li+, molar volume, glass transition temperature (Tg) and ionic conductivity values decrease, pass through a minimum around the composition x = 1.5, then increase, while density values increase, pass through a maximum, then decrease. The non-linear variation of these physical properties is a result of the classical mixed alkali effect. Powder X-ray diffraction shows that crystallization of the glasses leads to the formation of a Nasicon phase for the compositions x = 0 and x = 0.5, and to a mixture of phases for the other compositions. Raman spectroscopy study shows that the glass structure contains P2O7 and PO4 groups, and short -Ti-O-Ti-O-Ti- chains, formed by TiO6 octahedra linked to each other through corners. These chains are linked by phosphate tetrahedra to form -O-Ti-O-P-O- linkages.

Full Text:



- M. Minakshi, D. Mitchell, R. Jones, F. Alenazey, T. Watcharatharapong, S. Chakraborty, R. Ahuja, Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices, Nanoscale, 2016, 8, 11291-11305.

- V. Rajendran, A. V. Gayathri Devi, M. Azooz, F. H. El-Batal, Physicochemical studies of phosphate based P2O5–Na2O–CaO–TiO2 glasses for biomedical applications, J. Non-Cryst. Solids, 2007, 353, 77-84.

- N. Lyczko, A. Nzihou, P. Sharrock, Calcium phosphate sorbent for environmental application, Procedia Engineer., 2014, 83, 423-431.

- A. Serghini, R. Brochu, M. Ziyad, J. C. Vedrine, Synthesis, characterization and catalytic behavior of Cu0.5M2(PO4)3 (M = Zr, Sn, Ti), J. Alloy. Compd., 1992, 188, 60-64.

- A. El Jazouli, A. El Bouari, H. Fakrane, A. Housni, I. Mansouri, R. Olazcuaga, G. Le Flem, Crystallochemistry and structural study of some Nasicon-like phosphates, J. Alloy. Compd., 1997, 262-263, 49-53.

- N. Anantharamulu, K. K. Rao, G. Rambabu, B. V. Kumar, V. Radha, M. Vithal, A wide-ranging review on Nasicon type materials, J. Mater. Sci., 2011, 46, 2821-2837.

- A. Aatiq, C. Delmas, A. El Jazouli, Structural and electrochemical study of Li0.5Mn0.5Ti1.5Cr0.5(PO4)3, J. Solid. State. Chem., 2001, 1006, 169-174.

- A. Aatiq, M. Ménétrier, A. El Jazouli, C. Delmas, Structural and lithium intercalation of Mn(0.5-x)CaxTi2(PO4)3 phases (0 ≤ x ≤ 0.5), Solid State Ionics, 2002, 150, 391-405.

- J. B. Goodenough, H. -P. Hong, J. A. Kafalas, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, 11, 203-220.

- C. Delmas, J. -C. Viala, R. Olazcuaga, G. Le Flem, P. Hagenmuller, F. Cherkaoui, R. Brochu, Ionic conductivity in Nasicon-type phases Na1+xZr2−xLx(PO4)3 (L = Cr, In, Yb), Solid State Ionics, 1981, 3-4, 209-214.

- R. Roy, D. K. Agrawal, J. Alamo, R. A. Roy, CTP-: A new structural family of near-zero expansion ceramics, Mater. Res. Bull., 1984, 19, 471-477.

- V. I. Pet’kov, E. A. Asabina, I. A. Shchelokov, Thermal expansion of Nasicon materials, Inorg. Mater, 2013, 49, 502-506.

- A. El Jazouli, A. Nadiri, J. M. Dance, C. Delmas, G. Le Flem, Relationships between structure and magnetic properties of titanium (III) Nasicon type phosphates, J. Phys. Chem. Solids, 1988, 49, 779-783.

- J. Derouet, L. Beaury, P. Porcher, R. Olazcuaga, J. M. Dance, G. Le Flem, A. El Bouari, A. El Jazouli, A new Nasicon-type phosphate: Co0.5Ti2(PO4)3 II. Simulation of optical and magnetic properties, J. Solid State Chem., 1999, 143, 230-238.

- A. Mouline, M. Alami, R. Brochu, R. Olazcuaga, C. Parent, G. Le Flem, Structural and luminescent properties of a Nasicon-type phosphate CuI0.5MnII0.25Zr2(PO4)3, J. Solid State Chem., 2000, 152, 453-459.

- Z. Jian, Y. S. Hu, X. Ji, W. Chen, Nasicon‐structured materials for energy storage, Adv. Mater., 2017, 29, 1-16.

- S. Susman, C. J. Delbecq, J. A. McMillan, M. F. Roche, Nasiglass: a new vitreous electrolyte, Solid State Ionics, 1983, 9-10, 667-673.

- A. El Jazouli, Vitrification of phosphates of Nasicon-type structure, Adv. Mat. Res., 1994, 1-2, 105-114.

- C. R. Mariappan, G. Govindaraj, B. Roling, Lithium and potassium ion conduction in A3TiBP3O12 (A=Li, K; B = Zn, Cd) Nasicon-type glasses, Solid State Ionics, 2005, 176, 723–729.

- S. Krimi, A. El Jazouli, A. Lachgar, L. Rabardel, D. de Waal, J. R. Ramos-Barrado, Glass-crystal transformation of Na5−2xCaxTi(PO4)3 phosphates, Ann. Chim.-Sci. Mat., 2000, 25, 75-78.

- S. Krimi, A. El Jazouli, A. Lachgar and J. R. Ramos-Barrado, Glass-crystal transformation of Na3MgTi(PO4)3, Phosphorus Research Bulletin, 2003, 15, 142-145.

- S. Krimi, A. El Jazouli, A. Lachgar, Crystal structure of the new titanium phosphate Na3CaTi(PO4)3, Acta Cryst., 2007, 63, 291-292.

- F. E. Dardar, A. El Jazouli, A. Lachgar, M. Gross, C. Day, Vitreous and crystalline phosphates: elaboration and electrical properties, Acta Cryst., 2014, A 70, C1766.

- J. O. Isard, The mixed alkali effect in glass, J. Non-Cryst. Solids, 1969, 1, 235-261.

- D. E. Day, Mixed alkali glasses - Their properties and uses, J. Non-Cryst. Solids, 1976, 21, 343-372.

- H. Jain, H. L. Downing, N. L. Peterson, The mixed alkali effect in lithium - sodium borate glasses, J. Non-Cryst. Solids, 1984, 64, 335-349.

- J. Swenson, S. Adams, Mixed Alkali Effect in Glasses, Phys. Rev. Lett., 2003, 90, 155507-155510.

- W. R. Heffner, A Differential Thermal Analysis Apparatus for Exploring the Glass Transition, BFY Proceedings; edited by Eblen-Zayas, Behringer, and Kozminski; the American Association of Physics Teachers, 2015, pp. 36-39.

- S. Lamrhari, Z. El Khalidi, S. Krimi, M. Haddad, M. Couzi, A. Lachgar, A. El Jazouli, Synthesis and structural characterization of phosphate-based Nasiglasses Na3Ca1-xMnxTi(PO4)3 (0 ≤ x ≤ 1), J. Mater. Environ. Sci., 2018, (Accepted).

- P. Tarte, A. Rulmont, C. Merckaert-Ansay, Vibrational spectrum of nasicon-like, rhombohedral orthophosphates MIM2IV (PO4)3, Spectrochim. Acta, 1986, 42A, 1009-1016.

- R. Pikl, D. De Waal, A. Aatiq, A. El Jazouli, Vibrational spectra and factor group analysis of Mn(0.5+x)Ti(2−2x)Cr2x(PO4)3 {0≤ x≤ 0.50}, Vib. Spectrosc., 1998, 16, 137-143.

- R. Pikl, D. De Waal, A. Aatiq, A. El Jazouli, Vibrational Spectra and Factor Group Analysis of Li2xMn0.5−xTi2(PO4)3 {x= 0, 0.25, 0.50}, Mater. Res. Bull., 1998, 33, 955-961.

- D. F. Mullica, H. O. Perkins, D. A. Grossie, Structure of Dichromate-Type Lead Pyrophosphate, Pb2P2O7, J. Solid State Chem., 1986, 62, 371-376.

- S. Kaoua, S. Krimi, S. Pechev, P. Gravereau, J.P. Chaminade, M. Couzi, A. El Jazouli, Synthesis, crystal structure, and vibrational spectroscopic and UV-visible studies of Cs2MnP2O7, J. Solid State Chem., 2013, 198, 379-385.

- C. E. Bamberger, G. M. Begun, O. B. Cavin, Synthesis and characterization of sodium-titanium phosphates, Na4(TiO)(PO4)2, Na(TiO)PO4, and NaTi2(PO4)3, J. Solid State Chem., 1988, 73, 317-324.

- M. Chakir, A. El Jazouli, J. -P. Chaminade, F. Bourée, D. De Waal, New process of preparation, X-ray characterisation, structure and vibrational studies of a solid solution LiTiOAs1−xPxO4 (0≤x≤1), J. Solid State Chem., 2006, 179, 18-28.

- R. Chen, R. Yang, B. Durand, A. Pradel, M. Ribes, A study of the mixed alkali effect by frequency-dependent conductivity in Li2O-Na2O-P2O5 glasses, Solid State Ionics, 1992, 53-56, 1194-1199.

- A. Faivre, D. Viviani, J. Phalippou, Mixed alkali effect in Li and Na aluminophosphate glasses: influence of the cation environment, Solid State Ionics, 2005, 176, 325-332.

- Y. Gao, C. Cramer, Mixed cation effects in glasses with three types of alkali ions, Solid State Ionics, 2005, 176, 2279-2284.

- A. Bunde, M. D. Ingram, P. Maass, The dynamic structure model for ion transport in glasses, J. Non-Cryst. Solids, 1994, 172, 1222-1236.

- P. Maass, Towards a theory for the mixed alkali effect in glasses, J. Non-Cryst. Solids, 1999, 255, 35-46.

- D. E. Day, Mixed alkali glasses - Their properties and uses, J. Non-Cryst. Solids, 1976, 21, 343-372.

- J. O. Isard, The mixed alkali effect in glass, J. Non-Cryst. Solids, 1969, 1, 235-261.


  • There are currently no refbacks.

Copyright (c) 2018 Mediterranean Journal of Chemistry