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Abstract: A fluid-dynamic model of the motion of the cosmic objects is proposed in this paper. Within the limit 

of motion of the cosmic objects in the ideal medium, the expression of the attractive force is derived.  In the case 

of planets ( 1  ,
 
   -is the parameter depending upon the angular velocities, the dimension of the system 

and the velocity of the progressive motion of the system), the form of the attractive force coincides with the 

Newton law; in the case of the galaxies,
 

1  , the attractive force differs sufficiently from the Newton law.    

The case  1  corresponds to the planets and moons and we have in this limit the Kepler-Newton law of 

rotation curves.  When the parameters   1  , we have the rotation curves of the galaxies.  

The fluid-dynamic theory describes the rotation curves and attractive forces of both the galaxies and the 

planets  systems  without invoking dark matter hypothesis.     
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Introduction 

 
It is well known that in the Solar system, the 

attractive force is equal to:
2

)(
R

GMm
RFa    

where M    is   the central mass, m   is a mass of a 

planet,  G     is   the gravitation constant and  R  is 

the distance from the planet to the Sun ( the Newton 

law). 

The planets of the Solar system have a rotation 
curve which is well-described by the Kepler-Newton 

law: the orbital velocity, )(RV , is equal to  

R

MG
RV )(  .  

 The attempts to use the Kepler-Newton law for 

the description of the rotation curves of the galaxies, 
have led to failure. The galaxies rotation curves are 

varied and differ strongly on the Keplerian form. 

L.Volders was one of the first scientists who noticed 

this distinction. In 1959, he demonstrated [1] that the 

rotation curve of the spiral galaxy M33 differed 

strongly from the Kepler law.  During the 1960s-

1980s, V.Rubin and K.Ford, and O.Sofue , V.Rubin 

investigated the spiral galaxies [2,3]. They showed 

that there are three types of the rotation curves, and 

all of them differ from the Keplerian form. Their 

results have been confirmed over subsequent decades 

[4-13].  

Previously, astronomers thought that disk 

galaxies had mass distribution similar to the 

observed shining distributions of stars and gas, 

therefore the orbital speed would decline with the 

increasing distances in the same way as do the 

planets of the Solar System or moons of Earth, 

Jupiter et al. But it is not the case. Moreover, the 

rotation curves of the spiral galaxies are often 

asymmetric.   

The galaxies masses calculated from the 
observed rotation curves and law of gravity, and the 

mass profiles of galaxies, calculated from the 

luminosity profiles and the mass-to-light ratio in the 

stellar disks, do not match one another. The rotation 

curves imply that the mass continues to increase 

linearly with radius. Therefore, it has been postulated 

that a large amount of dark matter what extends 

galaxy into the galaxy’s halo and permits to explain 

the observed rotation curves.  

To calculate the speeds of the stars in the 

galaxies and the gas clouds speeds, the Doppler 

Effect is used. The measurement of the frequency 

(more exactly- the frequency shift relative to its 

position in free reference frame) is carried out on 

different spectrographs and optical interferometers. 

However, these methods allow to measure the 

spectrum velocities not of one star (there are a lot of 
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stars in the galaxy), but some average integrated 

spectrum   of emission, emitted by the large amount 

of indistinguishable emitters-stars.   

The stars velocities are determined using the 

optical range of spectrum. The velocities of the gas 

clouds are measured also with the use of radio 

irradiation (usually with the help of frequency of the 

neutral hydrogen, it is the most widespread in the 

Universe,   ( 21   cm), and of CO-molecules line 

in mm –range). 

Unfortunately, the accuracy of such a method of 

calculation )(RV  is small due to the contribution to 

the frequency shift both the Doppler effect (due to 

the approximately progressive orbital motion) and 

the Sagnac effect [14], which is caused by the star 

rotation  around its axis. Perhaps, namely the 

considerable influence of the Sagnac effect leads to 

the asymmetry of the rotation curves, which is often 

observed. 

Therefore, the calculation of true rotation curve 

)(RV   for the galaxies on the basis of the observed 

data, averaged on a large amount of stars, is very 

difficult.   

Several alternative hypotheses were proposed to 
explain the discrepancies of the observed rotation 

curves from the Kepler-Newton form.[15-17].  There 

are several other prepositions to avoid invoking dark 

matter.  

We propose the new natural approach to this 

problem, without artificial introduction of doubtful 

fields and accelerations: the hydrodynamic 

description of the motion of all cosmic objects: 

galaxies, stars, planets, moons. This has led to 

fruitful results. 

It is shown that the attractive forces are not the 
same for the planets in the  star system and  for the 

stars in the galaxy. In our description the forces are 

not continuous (as in the Newton law) but quantized, 

and the planets (and stars)  have stable orbits (this is 

not so in the case of the Newton law). 

 

Results and Discussion  

 

The rotation curves  

The galaxies consist of  a huge community of 

stars, quasars, gas clouds, consisting of (according to 

modern  knowledge)   high temperature plasmas, the 
gaseous clouds of  hydrogen, helium and some other 

light elements. Therefore, it is natural to use 

hydrodynamics to describe the motion of cosmic 

objects.  Most of them rotates (with the angular 

velocity


) and simultaneously move progressively 

with some velocity 0V   . This is a motion along the 

screw line. Consider the rotation around z   axis. 

The left and right screw lines are possible. It’s 

convenient to use the cylindrical coordinates. The 

parametric equations for the motion along the screw 

lines:  

tVzta 0;;  
 

 We’ll consider one of them with sign (+).  Introduce 

the vector of velocity for an element of the cosmic 

matter: ),,( zr UUUU 


. We consider the 

propagation of the cosmic object through the ideal 

media, without collisions. It can be considered as 

incompressible liquid. In the case of rotation, the 

Euler equation has the form: 

 

)(
1

][2)( pgradUUU
t

U

f




 


                 (1)

 

 Suppose, that small vibrations of media take 

place when the cosmic object moves, and neglect the 

second term on the left side  [18]. The Euler equation 

has the form: 

  '
1

][2 pU
t

U

f











   

                 (2) 

Here the second term on the left side is  the Coriolis 

force (with the sign (-)), 'p  -is the gradient of the 

variable part of the pressure in a medium, included 

the centrifugal force 
2][

2

1
r


    and  other 

possible forces in the Universe. 

 In the dimensionless values, the solutions of the 

equation (2) for the components of the velocity of 

the equation (2) (with the equation of the 

discontinuity) are equal to: 

 

 )()exp(),( 1   rJtiCtrU r  

)(
2

)exp(),( 1 


 rJtiiCtrU 



  

                       (3) 
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Here  
0

1
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r
r 
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1
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V

R
    ; 1r    is  

a dimension coordinate,  
0R   is  some 

characteristic dimension of the cosmic object. As the 
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velocity is positive value, then only positive parts of 

the Bessel functions have the physical sense.  

The possible meanings of the frequency     are 

restricted with the condition    2  , because 

only in this case the equation for rU   has the finite 

solutions. As a result, we have the quantized function 

on  r   for all three components of velocity.     

The obtained results for the velocity components 

allow conducting an analysis of the possible rotation 

curves of the cosmic objects. The orbital velocity is 

proportional to ),( trU  component: 

)(
2

~ 1 


 rJU 


.  The Bessel function  J1(x),   

has  asymptotic form  for x>>1: 

 )
4

3
cos(

12
)(1




 x

x
xJ

                 (4) 

The positive part of it coincides with the Kepler-

Newton law. In Fig.1,  the rotation curves for the 

Solar system are given: symbols – the orbital 

velocities of nine planets of the Solar system; dotted 
line – the Kepler law and solid line – the Bessel 

function J1(x) with  

..40;200;10 0

0

1 uaR
R

r
r   .  In the 

case of the  planets  1  .  

 

 

Figure1. The rotation curves for the Solar system 

are given: symbols – the orbital velocities of nine 

planets of the Solar system; dotted line – the 
Kepler-Newton law and solid line – the Bessel 

function with 150 .
 

 

The form of the rotation curves depends on the 

parameter  . The case  1
 
corresponds to the 

rotation curves of the planets and moons and 

coincides with the Kepler law. Hence, the Kepler 

approach is good for the planets. The other limited 

case, 1  corresponds to the rotation curves of the  

stars and gas clouds in the galaxies.   

In Fig. 2 the rotation curves are given in the case 

of a group of stars with the different parameters  .
 
 

It agrees with the fact that the measured curves 

corresponds to the group of different stars with 

different rotation parameters  . 

 

 

Figure 2. The rotation curves at the sum of the stars 

parameters:     =0.5; 1.5;5 (solid line);  

 =0.5; 1.1.5; 2; 3.7 (dotted line);
 
  = 0.5; 1.5;  2; 

3.7;  5; 5.2;  15 (dashed line);   = 50   -  dot – and 

dash- line – the Kepler-Newton  law. 
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 The attractive force.  

Let us derive the attractive force, which is 
peculiar both to the stars in the galaxies and the 

planets in the star systems. Consider the motion of 

the cosmic object on the circular orbit around the 

galaxy (or star) center and assume that the attractive 

force is balanced against the centripetal force of this 

object. If the medium is ideal, the velocity of an 

object is determined by the Euler equation and the 

orbital velocity is proportional to the positive part of 

the Bessel function:

)(
2

)exp(),( 1 


 rJtiiCtrU 


 .   

The attractive force is equal to: 
r

U
VFa

2


   

where V    is a volume of the object.    

Note the positive part of the Bessel function  

)(1 rJ   as )(1 rG . The attractive force is equal: 

 
2

12

2

1 )]([
1

)( 


 rG
r

C
VrFa 


     .  

            

                 (5) 

Here  
0

2

1 4 RCC    , 
2C   is in terms of the square 

of velocity,   and   
2

1 )]([
1

rG
r
   is dimensionless. 

In the limit of big parameter    ( 1    for the 

planet) we obtain:  

 
r

rG
12

)(1 


     .      

                 (6) 

and we have the Newton law: 

 

2
)(

r

GMm
rFa    .   Here  the  parameter GM   

corresponds to 
2

2

12

 

C
  .   

In Fig.3 the dependences of the attractive force 

)(rFa
  on the distance from the center of the 

rotation axis are given for the cosmic objects, both 

the planets and stars.  

It is seen that for the planet the attractive force 

coincides with the Newton law, at the edge of a 

system 0)( rFa
 , whereas for the galaxies it is 

not the case: the attractive force is extended far from 

the edge of a system, it is not monotone. After zero 

point there are regions where forces are still strong 

enough. The form of )(rFa  depends strongly on the 

parameter  . 

The attractive force for the group of neighboring 

stars with different parameters    , can have more 

complicated form, for example, is present in Fig.3. 

The stars attractive forces are extended far into 

space, much further than the Newton force and it can 

capture from the space other cosmic objects. 

Perhaps, owing to this fact, the large rarefied regions 
of gas clouds, asteroids and small planets exist far 

from the lighting regions of the galaxies.  

 

 

 

Figure 3. The dependences of the attractive force 

)(rFa   on the distance from the rotation axis. The 

parameters:   = 80 (planets, solid line); and for 

galaxies :    = 4(dotted line);  the sum of different 

parameters   :   = (0.1  + 0.3  +   1  +  2)  

(dashed line). The Newton law – dot-and-dash line. 

The maximum distance 3 .0R  

In Fig. 4, the dependences of the attractive force 

)(rFa   on the distance from the rotation axis in the 

star system are given. It is supposed that when  

4.0r   , the small planets rotate, with   80   , 

when  4.0r   , the giant planets rotate, with   

30   , (like Jupiter, Saturn). In such a case, the 

attractive force )(rFa    deviates from the Newton 

law.  
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Figure 4. The dependence of the attractive force 

)(rFa
  on the distance from the rotation axis in the 

Solar system.  The parameters:   =80 (solid line), 

small planets; and for the sum of small planets,    

   = 80 , 4.0r    and giant planets     = 30 

(dotted line).    

The Newton law – dashed line. The maximum 

distanc

Perhaps, the strange motion of the space crafts 

“Pioneer” is due  to these additional forces as well as 

the deviations of the planets motion which have led 

to search of the  hypothetic tenth planet in the Kuiper 

belt. 

 

Conclusion 

 
The hydrodynamic model of the motion of the 

cosmic objects explains the rotation curves of both 

the galaxies and planet systems. The positive part of 
the Bessel functions describes the   law of the 

motion. The Kepler-Newton law, which describes 

well the rotation curves of the planets and moons, is 

one of the limited cases ( 1 ) of the general 

expression for the rotation curves. In the other limit 

case 1  , the obtained expression describes the 

rotation curves of the stars in the galaxies. 

  The measured rotation curves correspond to a 

large group of stars with different parameters of 

rotation. The proposed hydrodynamic model shows 

that the observed rotation curves can be explained 

without invoking dark matter. 

 The expression for the attractive force which is 

applicable both for the stars in the galaxies and the 

planets in the stars systems, was derived.  It was 

obtained for the case   of ideal medium and the 

motion of the cosmic object on the circular orbit 

around the center of rotation.  In the case of  

1  , which takes place for planets, this 

expression coincides with the Newton law. When 

1    , the attractive force differs considerably 

from the   Newton law and spreads much longer than 

to the edge of the galaxy. 

The strange motion of the space crafts “Pioneer” 

can be explained with the influence of the force of 

the planets-giants. (Fig. 4). 

Our investigation has shown that dark matter and 

dark energy don’t exist in the Universe. 

The attractive force between the cosmic objects 

is caused by their motion. 
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