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Abstract: 3-O-Acetyl-glycyrrhetinic amides were prepared, and sulforhodamine B assays investigated their 

cytotoxicity. Their cytotoxicity strongly depended on the substitution pattern of the respective compounds. 

Thereby, an ethylenediamine-derived compound 2 performed the best, acting mainly by apoptosis. As far as 

heterocyclic amides are concerned, ring enlargement and the replacement of the distal nitrogen invariably led to a 

more or less complete loss of cytotoxic activity. Thus, the presence of a carbonyl function (C-30) seems necessary 

for providing significant cytotoxicity. 
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1. Introduction  
 

Cancer remains one of the leading causes of death; as 

many cancers are extremely poorly treated, there is 

still a high demand for cytotoxic compounds. Natural 

products, particularly the pentacyclic triterpenes, have 

proven to be valuable starting materials for this 

purpose. Glycyrrhetinic acid (GA, Scheme 1) is a 

pentacyclic triterpenoid being the main component of 

the extract of licorice roots. Several interesting 

biological properties have been attributed to parent 

GA 1-10. Of particular interest seemed that GA is only 

slightly cytotoxic for different human tumor cell lines 

due to this acting mainly by apoptosis 11-20. However, 

although its cytotoxicity is lower than that of betulinic 

acid, several derivatives have shown promising and 

even excellent cytotoxic activity recently 11,13,18,19,21. 

While there have been numerous studies on the 

cytotoxic activity of triterpene carboxylic acids such 

as oleanolic 22-26, ursolic 27-32, maslinic 33-40, or 

betulinic acid 41-49, the number of publications on 

glycyrrhetinic acid derivatives is incomparably 

smaller. This is all the more surprising as this 

triterpene carboxylic acid is very readily available 

even in large quantities from a renewable source and 

hence an ideal starting material for syntheses. 

Amides of triterpene carboxylic acids have been 

shown in the past to be                                                             

cytotoxic 11,18,19,21-24,26,33,34,37-39, and of special interest 

are those holding a heterocyclic ring at the distal 

amide position. Consequently, we became interested 

in the synthesis of 3-O-acetylated glycyrrhetinic acid 

amides holding heterocyclic moieties differing in the 

kind of heteroatoms (N, O, S), ring size (acyclic, 6, 7), 

and the steric demand of the heterocyclic system. 

 

2. Results and Discussion  
 

Acetylation of GA (Scheme 1) gave 1 in 91% 50 

whose activation by oxalylchloride in the presence of 

a catalytic amount of dimethylformamide              

(DMF) followed by the addition of either          

ethylenediamine, piperazine, homopiperazine,                             

morpholine, thiomorpholine, homomorpholine, 

homothiomorpholine, 1,4-diazabicyclo[3.2.2]  

nonane 24, 1,3-diazabicyclo[3.2.2]nonane 24,51 gave 

amides 2–10; reaction of 9 and 10 with methyl iodide 

resulted in the formation of the quaternary ammonium 

iodides 11 and 12, respectively. For comparison, 

primary amide 13 was prepared, and the Curtius 

degradation 52,53 of 1 gave amine 14.
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Scheme 1. Reactions and conditions: a) AcCl, NEt3, DMAP (cat.),    DCM, 23°C, 12 h, 91%; b) (COCl)2, DMF 

(cat.), DCM then: amine, NEt3, DMAP (cat), DCM, 23°C, 1 d:  2 (71%),  3 (64%),  4 (61%),  5 (88%), 

 6 (67%),  7 (86%),  8 (69%), 9 (78%),  10 (99%),  13 (97%); c) (COCl)2 then NaN3, AcCN, 23°C, 

1 h, then reflux, 12 h, 98%; d) MeI, DCM, 23°C, 1 d,  10 (50%),  12 (80%) 

 

To test the cytotoxic activity of the compounds, 

sulforhodamine B assays were performed employing 

a selection of different human tumor cell                    

lines 11,22,38,39. The results of these assays are compiled 

in Table 1. 

Interestingly, compounds piperazine derived 3 11,54 , 

and morpholine derived compound 4 18,55-57 are active, 

while their enlarged ring analogs 6 55-57 and 7 are not. 

Also, morpholine-derived 4 was shown to be 

cytotoxic, while thiomorpholine derived 5 was not 

active. Diazabiclo-derived compounds 9–12 

performed poorly in the SRB assays since only 10 

held a diminished cytotoxic activity.                                     

Amide 13 52,53,58-60 was not functioning, and                     

amine 14 61-66 showed EC50 values 11.3 and 20.1 M, 

respectively.
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Table 1. Cytotoxicity of selected compounds a). 

# A375 HT29 MCF-7 A2780 FaDu NIH 3T3 

GA >30 >30 >30 >30 >30 18.7 ± 4.2 

1 >30 >30 >30 >30 >30 >30 

2 4.1 ± 0.3 4.3 ± 0.4 3.2 ± 0.3 2.0 ± 0.2 5.7 ± 0.6 4.3 ± 0.3 

3 5.0 ± 0.3 4.4 ± 0.6 8.4 ± 0.8 8.2 ± 0.5 8.7 ± 0.9 8.7 ± 0.7 

4 18.66 ± 1.63 5.11 ± 1.07 10.74 ± 1.00 12.0 ± 0.62 13.4 ± 1.1 12.30 ± 1.02 

5 >30 >30 >30 >30 30 >30 

6 >30 >30 >30 >30 >30 >30 

7 >30 >30 23.4 ± 3.0 22.4 ± 3.9 >30 >30 

8 n.s. n.s. n.s. n.s. n.s. n.s. 

9 n.s. n.s. n.s. n.s. n.s. n.s. 

10 21.02 ± 0.4 24.7 ± 1.2 20.3 ± 1.4 19.0 ± 1.1 27.4 ± 2.2 25.5 ± 1.6 

11 >30 >30 >30 >30 >30 >30 

12 n.s. n.s. n.s. n.s. n.s. n.s. 

13 >30 >30 >30 >30 >30 >30 

14 12.4 ± 0.8 17.3 ± 1.0 13.4 ± 0.9 11.3 ± 0.9 19.4 ± 0.9 20.1 ± 0.8 

DX n.d. 0.9±0.2 1.1±0.3 0.02±0.01 n.d. 0.06±0.03 

a SRB assay EC50 values [µM] after 72 h of treatment; averaged from three independent experiments performed 

each in triplicate; confidence interval CI = 95%. Human cancer cell lines: A375 (melanoma, ATCC CRL_3222), 

HT29 (colorectal carcinoma, 91072201), MCF-7 (breast adenocarcinoma, CVCL_0031), A2780 (ovarian 

carcinoma, 93112519), FaDu (pharynx carcinoma, CVCL_1218), NIH 3T3 (non-malignant fibroblasts, ATCC 

CRL-158); cut-off 30 M, n.s. not soluble, n.d. not determined. Doxorubicin (DX) has been used as a positive 

standard. 

 

For most active compound 2 67,68 (EC50 2.0–4.3 M), 

several additional assays were performed, e.g., an 

acridine orange/propidium staining (AO/PI) using 

A2780 tumor cells. Thereby, a red-colored nucleus 

indicated necrotic cells while a green fluorescence is 

indicative for apoptotic cells. Trypan blue staining of 

the cells followed by automatic cell counting allowed 

to differentiate between cells with an intact cell 

membrane and cells without. The results from these 

assays are compiled in Table 2; parent GA and 

amine 14 were investigated for comparison, too. The 

compounds show slightly worse cytotoxicity than the 

positive standard doxorubicin (DX). Since no 

pronounced selectivity was observed, no further 

experiments with a primary cell line were undertaken. 

As a result, parent GA and compounds 2 and 14 

mainly act by apoptosis after an incubation period of 

2 days employing A2780 cells. This parallels previous 

findings 52 (for GA and 14 and A549 cells). 

 

Table 2. Percentage of apoptotic cells (A2780 cells) after 48 h of incubation (at given concentration; 2 x EC50); 

results from 6-fold determination, trypan blue assay. 

 GA 2 15 

concentration 60 M 4 M 20 M 

% apoptosis 70.1% ± 2.3% 89.5% ± 1.7% 80.4% ± 1.9% 

 

3. Conclusion 
 

The cytotoxicity of 3-O-acetyl-glycyrrhetinic amides 

strongly depends on the substitution pattern of the 

respective compounds. An ethylenediamine-derived 

compound 2 performed best, followed by the 

piperazine derivative 3. Ring enlargement as well as  

the replacement of the distal nitrogen led invariably to  

a more or less complete loss of cytotoxic activity. The 

presence of a carbonyl function (C-30) seems 

necessary for providing significant cytotoxicity since 

amine 14 only held EC50 values between 11.3–20.1 

M, respectively. Most active compound 2             

(EC50, A2780 cells = 2.0 M) mainly acted by apoptosis. 
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4. Experimental  
 

NMR spectra were recorded using the Varian 

spectrometers DD2 and VNMRS (400 and 500 MHz, 

respectively). MS spectra were taken on an Advion 

expression L CMS mass spectrometer (positive ion 

polarity mode, solvent: methanol, solvent                 

flow: 0.2 mL/min, spray voltage: 5.17 kV, source 

voltage: 77 V, APCI corona discharge: 4.2 μA, 

capillary temperature: 250°C, capillary                

voltage: 180 V, sheath gas: N2). Thin-layer 

chromatography was performed on pre-coated silica 

gel plates supplied by Macherey-Nagel. IR spectra 

were recorded on a Spectrum 1000 FT-IR-

spectrometer from Perkin Elmer. The UV/Vis-spectra 

were recorded on a Lambda 14 spectrometer from 

Perkin Elmer. The optical rotations were measured 

either on a JASCO P-2000 or a Perkin-Elmer 

polarimeter at 20°C. The melting points were 

determined using the Leica hot stage microscope 

Galen III and are uncorrected. The solvents were dried 

according to usual procedures. Glycyrrhetinic acid 

was bought from “Orgentis Chemicals GmbH” and 

used as received. 

 

4.1. Cell lines and culture conditions 

Following human cancer cell lines A375 (malignant 

melanoma), HT29 (colon adenocarcinoma), MCF-7 

(breast cancer), A2780 (ovarian carcinoma), FaDu 

(pharynx carcinoma), and non-malignant mouse 

fibroblasts NIH 3T3 were used. All cell lines were 

obtained from the Department of Oncology (Martin-

Luther-University Halle Wittenberg). Cultures were 

maintained as monolayers in RPMI 1640 medium 

with L-glutamine (Capricorn Scientific GmbH, 

Ebsdorfergrund, Germany) supplemented with 10% 

heat-inactivated fetal bovine serum (Sigma-Aldrich 

GmbH, Steinheim, Germany) and 

penicillin/streptomycin (Capricorn Scientific GmbH, 

Ebsdorfergrund, Germany) at 37°C in a humidified 

atmosphere with 5% CO2. 

 

4.2. Cytotoxicity assay (SRB assay) 

To evaluate the cytotoxicity of the compounds, the 

sulforhodamine-B (Kiton-Red S, ABCR GmbH, 

Karlsruhe, Germany) micro-culture colorimetric 

assay was used. The assay was carried out as 

described in the manual of the supplier. The EC50 

values were averaged from three independent 

experiments performed in triplicate and calculated 

from semi-logarithmic dose-response curves applying 

a non-linear 4P Hills-slope equation.  

 

4.3. Apoptosis test – acridine orange/propidium 

iodide (AO/PI) test 

AO/PI dye and fluorescence microscopy on A2780 

cells were performed to test or apoptotic cell death. 

The assay was carried out as described in the manual 

of the supplier. In short: Approx. 500000 cells were 

seeded in cell culture flasks and allowed to grow        

for 24 hours. After removing the medium, the 

substance-loaded medium was loaded, and the cells 

were incubated for 48 hours. The supernatant medium 

was collected and centrifuged, the pellet was 

suspended in phosphate-buffered saline (PBS) and 

centrifuged again. The liquid was removed, the cells 

re-suspended in PBS, mixed with AO/PI, and 

investigated using a fluorescence microscope. 

 

4.4. Apoptosis test – trypan blue cell counting 

Following the procedure, as described above for the 

AO/PI test, equal amounts of a trypan blue solution 

(0.4% in PBS, pH = 7.2) and a suspension of the pellet 

in PBS were mixed and transferred onto chamber 

slides (InvitrogenTM), and an automatic cell counter 

(Invitrogen TM countess automated cell counter) was 

used for counting the cells, differing between cells 

and an intact cell membrane and cells without. 

 

4.5. General procedure for the synthesis of amides 

2–10 (GPA) 

To a 1 (1 eq.) solution in dry DCM, a drop of dry DMF 

and oxalyl chloride (4 eq.) were added at 0°C. Stirring 

at 25°C was continued until the evolution of gases had 

ceased. The volatiles were removed under reduced 

pressure. The corresponding amine (3 eq.) was 

dissolved in dry DCM (20 mL), and a solution of TEA 

(4.2 eq.), DMAP (cat.) in dry DCM (10 mL), was 

added. To this mixture, the reaction mixture 

(dissolved in dry DCM) from above was slowly added 

at 0°C, and stirring at 23°C was continued for 1 day. 

Usual aqueous workup followed by liquid column 

chromatography (CHCl3/MeOH) gave the products 

2–10, respectively. 

 

(3, 20) 3-Acetyloxy-11-oxoolean-12-en-29-oic 

acid (1) 

Acetylation of GA as previously described 50 gave 2 

(4.9 g, 91%) as a colorless solid; m.p. 311–313°C 

(lit.:50 310–313°C); [α]
D

20
= +162.7° (c 0.85, CHCl3) 

[lit.:50 [α]
D

20
= +163.3° (c 1.00, CHCl3)];  

MS (ESI, MeOH): m/z 514 (100%, [M+H]+, 536                      

(60%, [M+Na]+. 

 

(3β, 20) 3-Acetyloxy-N-(2-aminoethyl)-11-

oxoolean-12-en-29-amide (2) 

Following GPA from 1 and ethylenediamine, 2        

(398 mg, 71%) 11,67,68 was obtained as a colorless 

solid; m.p. 114–117°C (lit.:11 126°C); [α]
D

20
= +81.2° 



Mediterr.J.Chem., 2021, 11(3)     N. Heise et al.               259 

 

 

(c 0.53 MeOH) [lit.:11 [α]
D

20
= +82° (c 0.37, MeOH)]; 

MS (ESI, MeOH): m/z 555 (100%, [M+Na]+. 

 

(3β, 20) 3-Acetyloxy-30-(1-piperazinyl)-olean-

11,29-dione (3) 

Following GPA from 2 and piperazine, 3 (364 mg, 

64%) was obtained as a colorless solid; m.p.             

158–160°C (lit.:11 160°C); [α]
D

20
= +123.8° (c 0.46 

MeOH) [lit.:11 [α]
D

20
= +120.6° (c 0.29, MeOH)];  

MS (ESI, MeOH): m/z 581 (100%, [M+H]+. 

 

(3β, 20) 3-Acetyloxy-30-(1-homopiperazinyl)-

olean-11,29-dione (4) 

Following GPA from 2 and homopiperazine, 4 (318 

mg, 61%) was obtained as a colorless solid; m.p.    

262–265°C (lit.:18 260–264°C); [α]
D

20
= +104.2°            

(c 0.66 CHCl3) [lit.:18 [α]
D

20
= 109.8° (c 0.38, CHCl3)]; 

MS (ESI, MeOH): m/z 596 (100%, [M+H]+. 

 

(3β, 20) 3-Acetyloxy-30-(morpholinyl)-olean-

11,29-dione (5) 
Following GPA from 2 (400 mg, 0.8 mmol) and 

morpholine (0.26 mL, 3.0 mmol), 5 (360 mg, 88%) 

was obtained as a colorless solid; m.p. 162–165°C;        

RF = 0.36 (SiO2, toluene/EtOAc/heptane/HCOOH, 

80:26:10:5); [α]
D

20
= +106.8° (c 0.175, CHCl3);        

UV-Vis (CHCl3): max (log ) = 249.2 nm (4.00);  

IR (ATR):  = 2951w, 1729m, 1631m, 1364w, 1244s, 

1118m, 1026s, 986m, 751s, 667w, 540w cm−1; 1H 

NMR (400 MHz, CDCl3):  = 5.68 (dd, J = 13.8, 2.7 

Hz, 1H, 12-H), 4.51 (dd, J = 11.6, 4.7 Hz, 1H, 3-H), 

3.71 – 3.55 (m, 8H, 33-H, 34-H, 35-H, 36-H), 2.79 (dt, 

J = 13.5, 3.6 Hz, 1H, 1-Ha), 2.34 (s, 1H, 9-H), 2.28 

(dd, J = 13.6, 3.3 Hz, 1H, 18-H), 2.12 – 1.99 (m, 2H, 

16-Ha, 21-Ha), 2.04 (s, 3H, 32-H), 1.97 (dt, J = 13.7, 

3.5 Hz, 1H, 19-Ha), 1.83 (td, J = 13.7, 4.6 Hz, 1H, 15-

Ha), 1.77 – 1.23 (m, 10H, 2-H, 19-Hb, 7-Ha, 6-Ha, 22-

Ha, 6-Hb, 7-Hb, 22-Hb, 21-Hb), 1.35 (s, 3H, 27-H), 1.21 

(s, 3H, 29-H), 1.20 – 1.17 (m, 1H, 15-Hb), 1.15 (s, 3H, 

25-H), 1.11 (s, 3H, 26-H), 1.10 – 0.96 (m, 2H, 1-Hb, 

16-Hb), 0.87 (s, 6H, 23-H, 24-H), 0.81 (s, 3H, 28-H), 

0.78 (d, J = 2.0 Hz, 1H, 5-H) ppm;  
13C NMR (101 MHz, CDCl3):  = 200.1 (C-11), 174.2 

(C-30), 171.1 (C-31), 169.6 (C-13), 128.7 (C-12), 

80.8 (C-3), 67.1 (C-34, C-35), 61.9 (C-9), 55.2 (C-5), 

48.4 (C-18), 46.1 (C-33, C-36), 45.4 (C-8), 44.0 (C-

20), 43.8 (C-19), 43.4 (C-14), 39.0 (C-1), 38.2 (C-4), 

37.9 (C-22), 37.1 (C-10), 33.5 (C-21), 32.9 (C-7), 

31.9 (C-17), 28.6 (C-28), 28.2 (C-23), 27.1 (C-29), 

26.9 (C-16), 26.6 (C-15), 23.7 (C-2), 23.2 (C-27), 

21.4 (C-32), 18.8 (C-26), 17.5 (C-6), 16.8 (C-24), 

16.6 (C-25) ppm;  

MS (ESI, MeOH): m/z 582 (100%, [M+H]+), 1164 

(58%, [2M+H]+), 612 (22%, [M+MeOH+H]+);  

analysis calcd for C36H55NO5 (512.35): C 74.32, H 

9.53, N 2.41; found: C 74.01, H 7.85, N 2.14. 

 

(3β, 20) 3-Acetyloxy-30-(thiomorpholinyl)-olean-

11,29-dione (6) 

Following GPA from 2 (400 mg, 0.8 mmol) and 

thiomorpholine (0.3 mL, 3.0 mmol), 6 (390 mg, 67%) 

was obtained as a colorless solid; m.p. 231–233°C;    

RF = 0.36 (SiO2, toluene/EtOAc/heptane/HCOOH, 

80:26:10:5); [α]
D

20
= +117.0° (c 0.182, CHCl3);         

UV-Vis (CHCl3): max (log ) = 248.7 nm (4.13);  

IR (ATR):  = 2949w, 1728m, 1656m, 1630m, 1364w, 

1244s, 1160m, 1026m, 986w, 958m, 751s, 667w cm−1; 
1H NMR (400 MHz, CDCl3):  = 5.70 (s, 1H, 12-H), 

4.51 (dd, J = 11.7, 4.8 Hz, 1H, 3-H), 3.87 (ddt,                 

J = 44.1, 13.8, 5.0 Hz, 4H, 33-H, 36-H), 2.79 (dt,           

J = 13.6, 3.6 Hz, 1H, 1-Ha), 2.61 (t, J = 5.1 Hz, 4H, 

34-H, 35-H), 2.34 (s, 1H, 9-H), 2.30 (d, J = 3.2 Hz, 

1H, 18-H), 2.04 (s, 3H, 32-H), 2.11 – 1.93 (m, 3H, 16-

Ha, 19-Ha, 21-Ha), 1.82 (td, J = 13.6, 4.5 Hz, 1H, 15-

Ha), 1.77 – 1.24 (m, 10H, 2-H, 7-Ha, 19-Hb, 6-Ha, 22-

Ha, 7-Hb, 6-Hb, 21-Hb), 1.34 (s, 3H, 27-H), 1.21 (s, 

3H, 29-H), 1.18 (s, 1H, 16-Hb), 1.15 (s, 3H, 25-H), 

1.11 (s, 3H, 26-H), 1.09 – 0.96 (m, 2H, 1-Hb, 15-Hb), 

0.87 (s, 6H, 23-H, 24-H), 0.80 (s, 3H, 28-H), 0.77 (d, 

J = 2.0 Hz, 1H, 5-H) ppm;  
13C NMR (101 MHz, CDCl3):  = 200.0 (C-11), 174.1 

(C-30), 171.1 (C-31), 169.5 (C-13), 128.7 (C-12), 

80.8 (C-3), 61.8 (C-9), 55.2 (C-5), 48.1 (C-18), 48.1 

(C-33, C-36), 45.4 (C-8), 44.3 (C-20), 44.2 (C-19), 

43.4 (C-14), 39.0 (C-1), 38.2 (C-4), 38.0 (C-22), 37.1 

(C-10), 33.2 (C-21), 32.9 (C-7), 31.9 (C-17), 28.6      

(C-28), 28.2 (C-23), 27.8 (C-34, C-35), 27.3 (C-29), 

26.9 (C-16), 26.5 (C-15), 23.7 (C-2), 23.2 (C-27), 

21.4 (C-32), 18.8 (C-26), 17.5 (C-6), 16.8 (C-24), 

16.5 (C-25) ppm;  

MS (ESI, MeOH): m/z 598 (100%, [M+H]+), 1195 

(42%, [2M+H]+);  

analysis calcd for C36H55NO4S (597.39): C 72.32, H 

9.27, N 2.34; found: C 72.04, H 9.49, N 2.17. 

 

(3β, 20) 3-Acetyloxy-30-(homomorpholinyl)-

olean-11,29-dione (7) 
Following GPA from 2 (400 mg, 0.8 mmol) and 

homomorpholine (220 mg, 1.6 mmol),                                

7 (400 mg, 86%) was obtained as a colorless solid; 

m.p. 130–133°C; RF = 0.32 (SiO2, toluene/EtOAc/ 

heptane/HCOOH, 80:26:10:5); [α]
D

20
= +111.7°                      

(c 0.188, CHCl3); UV-Vis (CHCl3): max (log ) =     

249.3 nm (4.02);  

IR (ATR):  = 2947m, 1729m, 1656m, 1619m, 1464w, 

1365m, 1244s, 1210w, 1126m, 1074m, 1028m, 985m, 

751m, 669w, 539w cm−1;  
1H NMR (500 MHz, CDCl3):  = 5.70 (s, 1H, 12-H), 

4.49 (dd, J = 11.8, 4.7 Hz, 1H, 3-H), 3.80 – 3.51                    

(m, 8H, 33-H, 34-H, 36-H, 38-H), 2.77 (dt, J = 13.6, 

3.6 Hz, 1H, 1-Ha), 2.33 (s, 1H, 9-H), 2.30 (d, J = 3.0 

Hz, 1H, 18-H), 2.11 – 1.97 (m, 3H, 32-H), 2.02 (s, 3H, 

16-Ha, 19-Ha, 21-Ha), 1.96 – 1.89 (m, 2H, 37-H), 1.81 

(td, J = 13.8, 4.8 Hz, 1H, 15-Ha), 1.74 – 1.36 (m, 10H, 

2-H, 7-Ha, 19-Hb, 6-Ha, 22-Ha, 7-Hb, 6-Hb, 21-Hb,              

22-Hb), 1.33 (s, 3H, 27-H), 1.21 (s, 3H, 29-Hb), 1.19 

– 1.15 (m, 1H, 16-Hb), 1.13 (s, 3H, 25-H), 1.09 (s, 3H, 

26-H), 1.07 – 0.96 (m, 2H, 1-Hb, 15-Hb), 0.85 (s, 6H, 

23-H, 24-H), 0.79 (s, 3H, 28-H), 0.76 (d, J = 1.8 Hz, 

1H, 5-H) ppm;  
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13C NMR (126 MHz, CDCl3):  = 199.9 (C-11), 174.7 

(C-30), 170.9 (C-31), 169.5 (C-13), 128.5 (C-12), 

80.6 (C-3), 70.7 (C-38), 70.4 (C-34), 61.7 (C-9), 55.0 

(C-5), 50.7 (C-36), 48.1 (C-18), 46.9 (C-33), 45.2 (C-

8), 44.3 (C-20), 44.1 (C-19), 43.3 (C-14), 38.8 (C-1), 

38.0 (C-4), 37.9 (C-22), 36.9 (C-10), 33.3 (C-21), 

32.8 (C-7), 31.8 (C-17), 30.4 (C-37), 28.5 (C-28), 

28.0 (C-23), 27.2 (C-29), 26.8 (C-16), 26.4 (C-15), 

23.5 (C-2), 23.0 (C-27), 21.3 (C-32), 18.7 (C-26), 

17.4 (C-6), 16.7 (C-24), 16.4 (C-25) ppm;  

MS (ESI, MeOH): m/z 596 (100%, [M]+);  

analysis calcd for C37H57NO5 (595.42): C 74.58, H 

9.64, N 2.35; found: C 74.33, H 9.93, N 1.97. 

 

(3β, 20) 3-Acetyloxy-30-(1,4-thiazepanylamide)-

olean-11,29-dione (8) 
Following GPA from 2 (400 mg, 0.8 mmol) and 

homothiomorpholin (240 mg, 1.6 mmol), 8 (330 g, 

69%) was obtained as a colorless solid; m.p.             

145–148°C; RF = 0.41 (SiO2, toluene/EtOAc/heptane/ 

HCOOH, 80:26:10:5); [α]
D

20
= +104.8° (c 0.163, 

CHCl3); UV-Vis (CHCl3): max (log ) = 249.9 nm 

(3.98);  

IR (ATR):  = 2948m, 2873w, 1728m, 1656m, 1619s, 

1465w, 1406m, 1365m, 1243s, 1210m, 1161w, 

1027m, 985m, 878w, 751s, 668w cm−1;  
1H NMR (500 MHz, CDCl3):  = 5.75 (s, 1H, 12-H), 

4.51 (dd, J = 11.7, 4.8 Hz, 1H, 3-H), 3.96 – 3.40 (m, 

4H, 33-H, 36-H), 2.86 – 2.76 (m, 3H, 1-Ha, 34-H), 

2.75 – 2.63 (m, 2H, 38-H), 2.46 – 2.34 (m, 2H, 9-H, 

18-H), 2.17 – 1.96 (m, 3H, 16-Ha, 19-Ha, 21-Ha), 2.04 

(s, 3H, 32-H), 1.90 – 1.77 (m, 1H, 15-Ha), 1.77 – 1.38 

(m, 12H, 2-H, 7-Ha, 19-Hb, 6-Ha, 22-Ha, 6-Hb, 7-Hb, 

37-H, 21-Hb, 22-Hb), 1.35 (s, 3H, 27-H), 1.23 (s, 3H, 

29-H), 1.19 (m, 1H, 16-Hb), 1.15 (s, 3H, 25-H), 1.11 

(s, 3H, 26-H), 1.09 – 0.96 (m, 2H, 1-Hb, 15-Hb), 0.87 

(s, 6H, 23-H, 24-H), 0.81 (s, 3H, 28-H), 0.78 (d, J = 

2.0 Hz, 1H, 5-H) ppm;  
13C NMR (126 MHz, CDCl3):  = 200.1 (C-11), 175.0 

(C-30), 171.1 (C-31), 169.6 (C-13), 128.8 (C-12), 

80.8 (C-3), 61.8 (C-9), 55.2 (C-5), 52.0 (C-36), 48.5 

(C-33), 48.2 (C-18), 45.4 (C-8), 44.5 (C-20), 44.5 (C-

19), 43.5 (C-14), 39.0 (C-1), 38.2 (C-4), 38.2 (C-22), 

37.1 (C-10), 33.3 (C-21), 32.9 (C-7), 32.0 (C-17), 

28.7 (C-28), 28.2 (C-23), 27.4 (C-29), 27.0 (C-16), 

26.6 (C-15), 23.7 (C-2), 23.2 (C-27), 21.4 (C-32), 

18.9 (C-26), 17.5 (C-6), 16.8 (C-24), 16.6 (C-25) 

ppm;  

MS (ESI, MeOH): m/z 612 (100%, [M]+);  

analysis calcd for C37H57NO4S (611.4): C 72.62, H 

9.39, N 2.29; found: C 72.49, H 9.63, N 1.99. 

 

(3β, 20) 30-(1,4-Diazabicyclo[3.2.2]non-4-yl)-

11,30-dioxoolean-12-en-3-yl acetate (9)  

Following GPA from 2 (256 mg, 0.51 mmol) and 1,4-

diazabicyclo[3.2.2]nonane (250 mg, 1.24 mmol), 9 

(244 mg, 78%) was obtained as a colorless solid; m.p. 

275–278°C (lit.: 276–279°C); [α]
D

20
= +29.3° (c 0.20, 

CHCl3) [lit.: [α]
D

20
= +28.8° (c 0.15, CHCl3)];  

MS (ESI, MeOH): m/z = 622 (50%, [M + H]+), 654 

(95%, [M + CH3OH + H]+), 1242 (100%, [2M + H]+).  

 

(3β, 20) 30-(1,3-Diazabicyclo[3.2.2]non-3-yl)-

11,30-dioxoolean-12-en-3-yl acetate (10) 

Following GPA from 2 (245 mg, 0.48 mmol) and 1,3-

diazabicyclo[3.2.2]nonane (250 mg, 1.24 mmol), 10 

(276 mg, 99%) was obtained as a colorless solid; m.p. 

156–159°C (lit.: 156–160°C); [α]
D

20
= +85.3° (c 0.25, 

CHCl3) [lit.: [α]
D

20
= +84.6° (c 0.11, CHCl3)];  

MS (ESI, MeOH): m/z = 621.3 (100%, [M + H]+), 

622.3 (45%; [M + 2H]+); MS (ESI, MeOH): m/z = 619 

(80%, [M-H]-), 620 2 (35%, [M]-). 

 

3β-Acetyloxy-30-(1-methyl-4-aza-1-

azoniabicyclo[3.2.2]non-4-yl)-11,30-dioxoolean-

12-ene iodide (11)  

This compound was obtained from 9 (168 mg, 

0.27 mmol) and MeI (0.25 mL, 1.12 mmol) as an off-

white solid (120 mg, 50%); m.p. 201–204°C (lit.: m.p. 

205°C (decomp.)); [α]
D

20
= + 55.0° (c 0.15, CHCl3) 

[lit.: [α]
D

20
= +56.5° (c 0.10, CHCl3)];  

MS (ESI, MeOH): m/z = 635 (100%, [M]+) , 636 

(40%, [M + H]+). 

 

(3β)Acetyloxy-30-(1-methyl-3-aza-1-azoniabicyclo 

[3.2.2]non-3-yl)-11,30-dioxoolean-12-ene iodide 

(12)  
This compound was obtained from 10 (175 mg, 

0.28 mmol) and MeI (0.25 mL, 1.12 mmol) as an off-

white solid (170 mg, 80%); m.p. 262–266°C (lit.: m.p. 

261–266°C (decomp.)); [α]
D

20
= +47.0° (c 0.15, CHCl3) 

[lit.: [α]
D

20
= +48.3° (c 0.161, CHCl3)]; 

 MS (ESI, MeOH): m/z = 635 (100%, [M]+).  

 

(320) 3-Acetyloxy-11-oxoolean-12-en-29-

amide (13) 

Following GPA and as previously described as an off-

white solid (97%); m.p. 309–312°C (lit.:52                  

312–314°C); [α]
D

20
= +121.3° (c 0.4, CHCl3) [lit.:52 

[α]
D

20
= +119.05° (c 0.41, CHCl3)];  

MS (ESI, MeOH): m/z 512 (100%, [M+H]+), 534 

(50%, [M+Na]+). 

 

(320-Amino-3-acetyloxy-30-norolean-12-

en-11-one (14) 

Obtained as previously [52, 53] described as a 

colorless solid (98%); m.p. 231–234°C (lit.: 52          

235–237°C); [α]
D

20
= 80.1° (c 0.5, CHCl3) [lit.: 52 

[α]
D

20
= 80.5° (c 0.63, CHCl3)];  

MS (ESI, MeOH): m/z 484 (100%, [M+H]+). 
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