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Abstract: Cancer is one of the fastest-growing epidemics that affect millions yearly. A handful of anticancer drugs 

are available on the market, but they produce undesirable side effects. Currently, tubulin inhibitors targeting the 

colchicine binding site are considered an important target due to their structural simplicity and favorable 

pharmacokinetics with fewer side effects. Different researchers conducted many studies to discover a novel tubulin 

inhibitor targeting the colchicine binding site with high safety and potency. In the present study, we performed 

computational analysis of 48 styrylquinolines analogs obtained from literature using different drug designing tools. 

The pharmacophore mapping study was conducted to identify the important pharmacophoric features essential for 

biological activity. Atom-based 3D-QSAR (3-dimensional quantitative structure-activity relationship) analysis 

was carried out to know the contribution of different atoms to model development. The generated model showed 

a statistically significant coefficient of determinations for the training and test sets. The best QSAR model was 

selected based on R2 (0.8624) and Q2 (0.6707) values. Contour plot analysis of the developed model unveiled the 

chemical features necessary for tubulin inhibition. A docking study was performed on potent styrylquinoline 

analog 9VII-f(46), which shows the highest SP docking scores (-5.494). ADME (Absorption, distribution, 

metabolism, and excretion) analysis provides valuable information about the drugability of newly designed 

compounds. 

 

Keywords: Colchicine binding site; Styrylquinolines analogs; Pharmacophore mapping; Atom-based 3D-QSAR 
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1. Introduction 
 

Cancer is considered to be any of a large number of 

diseases characterized by the development of 

abnormal cells that divide uncontrollably and can 

migrate and destroy normal body tissue 1. It is 

considered the second-leading cause of death 2 and 

was estimated to be responsible for ten million deaths 

globally in 2020 3-5. The prevalence & risk factor 

associated with it is an alarming concern globally 6. A 

handful of different categories of anticancer drugs are 

available in the market, like Abitrexate (Methotrexate 

injection), Abraxane (Paclitaxel with albumin 

injection), and Adriamycin (Doxorubicin) 7. Though 

cancer is not controllable in many cases, these agents 

cause undesirable side effects like anemia, appetite 

loss, bleeding and bruising (thrombocytopenia), hair 

loss, constipation, skin changes or reactions, etc. 8-10. 

So, there is an utmost need to develop novel 

anticancer agents to minimize all those side effects 

and improve the quality of life. Microtubules are 

recognized as an excellent target for cancer 

chemotherapeutics which can cause apoptosis of 

cancer cells by disrupting microtubule dynamics 11-15. 

Four unique binding sites in tubulin are present to 

which taxanes, vinca alkaloids, laulimalide, and 

colchicine bind, respectively 16-21. Microtubule 

targeting agents that target the vinca site and taxanes 

(e.g., vincristine and paclitaxel, respectively) are 

highly potent and have been approved for clinical              

use 22-25. However, their clinical usefulness is 

hampered for several reasons, such as developing 

multi-drug resistance (MDR), poor water solubility, 

and pharmacokinetics 26. Tubulin inhibitors targeting 

the colchicine binding site can overcome the 

drawbacks due to their structural simplicity and 

favorable pharmacokinetics 14. In contrast to agents 

binding to the other three sites, colchicine interacts 

with high affinity to tubulin and becomes 

copolymerized into microtubules 27-29. Colchicine 
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binding to β-tubulin leads to curved tubulin dimer due 

to a steric clash between colchicine and α-tubulin, 

which inhibits microtubule assembly. 30-32. The 

literature survey revealed that several analogs of 

tubulin inhibitors targeting the colchicine binding site 

have been synthesized, evaluated, and reported by 

researchers for the potential binding interactions with 

active site amino acid residues of tubulin. Several 

antitubulin agents targeting the colchicine binding site 

have been marketed as potential anticancer agents, 

such as colchicine (approved in 2009 by FDA), 

combretastatin (in phase I), and 2-Methoxyestradiol 

(in phase I), and some are under different phases of 

clinical trials. Recently, an FDA-approved drug, 

fosbretabulin (combretastatin A-4 phosphate), which 

is utilized for treating thyroid cancer, targets 

specifically the colchicine binding site. AVE8062 

(ombrabulin, 5) is another CA-4 analog that exerts its 

anticancer effect by disrupting tumor blood vessel 

formation. It is also effective against several cancer 

cells that are resistant to taxanes. In a phase I study, 

the combination of AVE8062 with docetaxel was well 

tolerated. A phase III study is currently ongoing for 

advanced cancer treatment. In the present study, we 

have attempted to perform computational analyses 

using drug-designing tools on 48 styrylquinolines 

derivatives reported in the literature 33. The 
pharmacophore mapping was performed to establish 

the relationship between important pharmacophore 

features responsible for biological activity. Atom-

based QSAR studies were conducted to investigate 

the contribution of each atom to the model. Molecular 

docking studies suggest key molecular interactions at 

the active site of the tubulin surrounded by amino 

acids. These studies (i.e., Pharmacophore mapping, 

Atom-based 3D-QSAR study, Molecular docking, 

and ADME property prediction) provided 

complementary information that may be useful in the 

future. The flow of work of computational analysis is 

given in Fig. 1. 

 

ss 

Figure 1. Flow of work of computational analysis 

 

2. Materials and methods 
 

2.1. Selection of data 
48 styrylquinoline analogs reported in the literature 33 

were subjected to 3D-QSAR analysis, 

pharmacophore mapping, and molecular docking. 

The dataset’s structures were sketched using 

ChemDraw Ultra 12.0 software and saved in ‘.mol2’ 

format. The common core of styrylquinoline analogs 

is presented as (1), and the substituted groups with 

biological activities are shown in Table 1. 
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Atom-based 3D-QSAR studies were performed by 

Schrodinger MAESTRO’ v12.1. Ligand was prepared 

using the LigPrep module of Maestro v12.1. 

Pharmacophore mapping and docking analysis were 

done using the PHASE and Glide module of 

Schrodinger Maestro v12.1 software. 

 

Table 1. Styrylquinoline analogs with their IC50 and pIC50 values. 

 

S.No. Compounds 

Structures Activity (µm) 

R1 R2 
IC50 

value 

pIC50 

value 

1. 

 
9I-a(1) 

  

7.53 5.12 

2. 9I-b(2) 

  

5.57 5.25 

3. 9I-c(3) 

 

 

2.18 5.66 

4. 9I-d(4) 

 
 

3.31 5.48 

5. 9I-e(5) 

 

 

66.23 4.18 

6. 9I-f(6) 

 
 

10.18 4.99 

7. 9I-g(7) 

  

10.7 4.97 

8. 9I-h(8) 

 
 

9.17 5.04 

9. 9II-a(9) 

  

4.58 5.34 

10. 9II-b(10) 

  

3.06 5.51 
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11. 9II-c(11) 

 

 

1.32 5.88 

12. 9II-d(12) 

  

2.32 5.63 

13. 9II-e(13) 

 
 

29.73 4.53 

14. 9II-f(14) 

 
 

10.92 4.96 

15. 9II-g(15) 

  

7.23 5.14 

16. 9II-h(16) 

 
 

11.96 4.92 

17. 9III-a(17) 

  

4.36 5.36 

18. 9III-b(18) 

  

3.46 5.46 

19. 9III-c(19) 

 

 

2.2 5.66 

20. 9III-d(20) 

  

3.44 5.46 

21. 9III-h(21) 

 
 

8.77 5.06 

22. 9IV-a(22) 

  

3.03 5.52 

23. 9IV-b(23) 

  

1.7 5.77 

24. 9IV-c(24) 

 

 

0.5 6.30 
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25. 9IV-d(25) 

  

2.28 5.64 

26. 9IV-e(26) 

 
 

13.02 4.89 

27. 9IV-g(27) 

  

4.03 5.39 

28. 9IV-h(28) 

 
 

7.09 5.15 

29. 9V-a(29) 

 

 

3.95 5.40 

30. 9V-b(30) 

 

 

2.88 5.54 

31. 9V-c(31) 

  

1.49 5.83 

32. 9V-d(32) 

 
 

1.95 5.71 

33. 9V-e(33) 

  

14.28 4.85 

34. 9V-f(34) 

  

25.43 4.59 

35. 9V-g(35) 

 

 

4.12 5.39 



Mediterr.J.Chem., 2023, 13(2)     P. Chourasia et al.             161 

 

 

36. 9VI-a(36) 

  

3.21 5.49 

37. 9VI-b(37) 

  

1.27 5.90 

38. 9VI-c(38) 

 

 

1.08 5.97 

39. 9VI-d(39) 

  

1.17 5.93 

40. 9VI-g(40) 

  

11.73 4.93 

41. 9VII-a(41) 

  

3.17 5.50 

42. 9VII-b(42) 

  

1.44 5.84 

43. 9VII-c(43) 

 

 

0.38 6.42 

44. 9VII-d(44) 

  

7.41 5.13 

45. 9VII-e(45) 

 
 

9.14 5.04 

46. 9VII-f(46) 

 
 

9.64 5.02 

47. 9VII-g(47) 

  

3.77 5.42 

48. 9VII-h(48) 

 
 

18.43 4.73 

 

2.2. 3D-QSAR analysis 

For 3D-QSAR, the compounds were divided into 

training and test set. The training set covers 70% of 

total molecules, whereas the remaining 30% of 

compounds are taken as a test set. For the best 3D 

QSAR model generation, the molecules were aligned 
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to find the best alignment and standard features      

(Fig. 2). This alignment is based on the maximum 

standard core structure of molecules using the most 

active molecule in the dataset template. A statistically 

significant atom-based 3D-QSAR model was 

developed via partial least-squares (PLS) regression, 

where an increase in statistical significance and 

predictivity was observed up to five PLS factors 34-37. 

The various statistical parameters of the 3D-QSAR 

model are used to evaluate the robustness of the 

QSAR model. A scatter plot was constructed between 

actual and predicted activity to confirm minimal 

diversity in the biological activities between training 

and test set molecules, respectively 38-40. 
 

 

Figure 2. Molecular alignment of all the compounds in the datasets for tubulin inhibitors 

 

2.3. Pharmacophore mapping 

We identified the critical pharmacophoric features by 

pharmacophore mapping using the PHASE module to 

set up the relationship between molecular descriptors 

and biological activity. The compounds from the 

dataset were subjected to the LigPrep module to 

produce high-quality 3D structures of all atoms with 

correct chirality 41. In the present study, the module 

provides 2 standard chemical features, i.e., ring 

aromaticity (R) & hydrophobic group (H) (Fig. 3(A)).  
 

 

Figure 3(A). Common pharmacophoric features of the generated module 

To find the exact positions of these features, we have 

used a distance calculation tool inbuilt into the 

module to ascertain the inter-features distance map 

shown in Fig. 3(B). The PHASE module generated  

various pharmacophore hypotheses and computed 

their survival scores. Among those, the best was 

selected, containing the essential features 

responsible for activity 42,43. 
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Figure 3(B). Inter-featuric distance map of HHRRR_1 hypothesis 

 

2.4. Pharmacophore hypothesis generation 

The pharmacophore hypotheses were created based 

on the standard pharmacophoric features of all 48 

compounds. A maximum of five pharmacophoric 

sites were selected to develop a common 

pharmacophore hypothesis. Further, five-point 

pharmacophore hypotheses matching all active 

ligands were generated with a box size of 1 Å, and 

minimum inter-site distances between two features 

were set at 2 Å. Among the generated hypothesis, the 

best was selected based on the Phase hypothesis 

score, site score, survival score, Selectivity score, 

volume score, vector score, number of matches, and 

energy terms 44,45. 

 

2.5. Molecular Docking 

To determine the binding interaction of compounds 

containing essential pharmacophoric features, 

molecular docking studies were performed through 

the Glide module of Schrodinger Maestro v12.1 46 on 

styrylquinoline analogs to the binding site of tubulin. 

The 3D-crystal structure of the protein was obtained 

from the protein data bank and processed through the 

protein preparation wizard in Maestro Wizard v12.1. 

Water molecules were removed, and hydrogen atoms 

and charges were automatically added to the protein 

molecules by refinement step using the default force 

field OPLS_ 3e. After optimization, binding pockets 

in the receptor were located, and the docking results 

were obtained with different docked ligand 

conformations 47-51.  

 

2.6. ADME property predictions 

The drug-like activity of the ligand molecule was 

identified using ADME properties by the QikProp 

module of Schrodinger 52. This module is a quick, 

accurate, and easy-to-use ADME prediction program 

designed to produce certain descriptors related to 

ADME. It predicts physicochemical descriptors and 

pharmacokinetic properties in terms of #star: it 

defines the number of property or descriptor values 

that fall outside the 95% range of similar values for 

known drugs. A large number of stars suggests that a 

molecule is less drug-like than molecules with few 

stars. The following properties and descriptors are 

included in the determination of #stars: MW, dipole, 

IP, EA, SASA, FOSA, FISA, PISA, WPSA, PSA, 

volume, #rotor, donorHB, accptHB, glob, QPpolrz, 

QPlogPC16, QPlogPoct, QPlogPw, QPlogPo/w, 

logS, QPLogKhsa, QPlogBB, #metabol. The range of 

recommended values for #star is 0-5.ADME 

properties determine the drug-like activity of ligand 

molecules based on Lipinski’s rule of five. The rules 

are: mol_MW < 500, QPlogPo/w < 5, donorHB ≤ 5, 

accptHB ≤ 10. Compounds that satisfy these rules are 

considered drug-like. Jorgensen’s rules of three are 

QPlogS > -5.7, QP PCaco > 22 nm/s, # Primary 

Metabolites < 7 53. 

 

3. Results and discussion 
 

3.1. Pharmacophore modeling 

We generated pharmacophore hypotheses of all the 

selected compounds from the dataset to identify 

standard features essential for biological activity. The 

generated hypotheses comprise five pharmacophoric 

features, i.e., 2 hydrophobic interactions (H12, H14), 

3 aromatic rings (R15, R17, R18). These features 

display a crucial role in the inhibitory potencies of 

compounds toward the target. The field distances 

between H12-H17, H12-R18, H14-R15, H14-R17, 

H14-R18, R15-R17, R15-R18, and R17-R18 were 

found to be 6.60 Å, 3.58 Å, 5.57Å, 3.29 Å, 5.89 Å, 

8.83 Å, 6.27 Å and 8.15Å respectively. HHRRR_1 

was selected as the best hypothesis among the 

generated ideas based on the scoring values of 

different parameters. 

The generated pharmacophore model can be 

evaluated by two tools, namely % Screen plot & ROC 

plot. The percent screen plot is the curve between the 

percentage of actives recovered And the percentage of 

ligands screened for the hypothesis. The ROC plot is 

drawn between sensitivity and specificity. The ROC 
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curve that passes through the upper left corner shows 

100% sensitivity and 100% specificity. Therefore, 

this suggests that the method's accuracy depends on 

the closeness of the curves in the upper left corner. 

The present study showed that both the percent screen 

plot and ROC plot are in the extreme left corner, as 

shown in Fig. 4(A) and     Fig.4 (B), which suggests 

the accuracy of the hypotheses generated by the 

PHASE module.

  
(A) 

 
(B) 

Figure 4. (A) percent screen plot; (B) ROC plot 

 

3.2. Atom-based 3D-QSAR analysis 

The QSAR results obtained through the Maestro 

v12.1 module show the statistically significant 

coefficient for the training and test sets. Each row of 

the QSAR statics table was developed via partial 

least-squares (PLS) regression, where molecules were 

clustered by a PLS factor of 5. Several statistical 

parameters such as SD, R2, F, P, RMSE (Root mean 

square error), Q2, and Pearson-R were selected to 

evaluate the robustness of the QSAR model. For good 

predictivity and robust significance, the QSAR model 

should have a significant value of R2 (correlation for 

training set molecules), Q2 (cross-validated 

correlation for test set molecules), Pearson-R, and F-

value. The R2 value should be preferably greater than 

0.6, and Q2 and Pearson-R should be greater than 0.5. 

The RMSE should be low, along with a small value 

of the variance ratio, p. All five models generated by 

the module are shown in    Table 3. Based on the 

above knowledge, we have chosen 5th model as a 

significant QSAR model due to higher Q2 and R2 

values of 0.6707 and 0.8624, respectively. Atom type 

fraction segment displayed the fraction contributed by 

each atom type for each number of PLS factors used 

in the QSAR model, as summarized in Table 4. 

The correlation between experimental activity and 

predicted activity of training and test set in the form 

of scatter plots are shown in Fig. 5. This scattered plot 

shows the uniform distribution of training set 

molecules throughout the straight line passing 

through the origin (0, 0). 
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Table 2. Desired values for the statistically significant model. 

Validation Parameters Desired value 

Squared cross-validation coefficient (q2) >0.5 

Squared non-cross-validation coefficient(r2) >0.5 

Standard error of estimate (SEE) Smaller is better (<0.3) 

Predictive factorr2 (r2
pred) >0.5 

 

Table 3. Atom-based 3D-QSAR statistics table. 

# Factors SD R2 R2CV F P RMSE Q2 Pearson-r 

1 0.2384 0.7412 0.6218 106 2.07E-12 0.21 0.5612 0.8128 

2 0.2148 0.7955 0.6356 70 3.92E-13 0.18 0.6655 0.8533 

3 0.1982 0.8308 0.5922 57.3 1.39E-13 0.2 0.5866 0.8041 

4 0.1884 0.8514 0.5413 48.7 1.30E-13 0.18 0.6704 0.8423 

5 0.1841 0.8624 0.4783 41.4 2.81E-13 0.18 0.6707 0.8475 

 

Table 4. Atom type fraction. 

# Factors H-bond donor Hydrophobic/non-polar Negative ionic 
Electron-

withdrawing 

1 0.036 0.683 0.014 0.267 

2 0.031 0.707 0.017 0.245 

3 0.033 0.722 0.024 0.221 

4 0.035 0.717 0.029 0.219 

5 0.038 0.72 0.028 0.214 

 

 
(A) 
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(B) 

Figure 5. Scattered plot of experimental activity Vs predicted activity (A) training set; (B) test set molecules 

 

3.3. QSAR Contour plot analysis 

The result obtained by 3D-QSAR were analyzed 

using contour maps to understand the effect of 

substituents at different positions on the potency and 

selectivity of inhibitors. The blue cubes indicate the 

regions of favorable interactions, whereas the red 

cubes indicate the regions of unfavorable interactions. 

The 3D-QSAR model was applied to the most active 

compound to obtain significant favorable and 

unfavorable regions for hydrogen bond donor, 

hydrophobic, and electron-withdrawing groups. 

For the hydrophobic character in the most active 

compound (9I-f(6)), the appearance of blue cubes 

near the ortho position of the phenyl ring of 

stryrlquinoline moiety (Fig. 6(A)) shows that this 

position is favorable for hydrophobic substitution. On 

the other hand, the presence of red cubes around the 

benzophenone moiety and ethylene bridge indicates 

that these positions are unfavorable for hydrophobic 

substitution. 

The hydrogen bond donating attributes is another 

important component impacting the activity. For 

example, in compound (9I-f(6)), the appearance of 

red cubes around NH group (Fig. 6(B)) indicates that 

this region is unfavorable for hydrogen bond donating 

groups. 

The presence of red cubes around the oxygen atom of 

benzophenone moiety and near the NH bridge 

between styrylquinoline and benzophenone moiety 

(Fig. 6(C)) indicated the non-preference of electron-

withdrawing groups at these positions.

 

 
(A) 
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(B) 

 
(C) 

Figure 6. QSAR Contour plot to show the effect of substituents at different positions. The presence of blue 

cubes indicates the region of favorable interaction. In contrast, the appearance of red cubes indicates the 

unfavorable region for (A) Hydrophobic groups, (B) Hydrogen bond donors, and (C) Electron withdrawing 

groups. 

 

 
(A) 
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(B) 

Figure 7. Diagram of compound 9VII-f(46) interacting with tubulin: (A) 2D, (B) 3D 

 

3.4. Molecular docking analysis 

The potential interactions between the most potent 

derivatives and protein were performed using the 

Glide module of Schrodinger. All the 

styrylquinoline analogs were docked to the binding 

cavity of tubulin. The potent styrylquinoline analogs 

9VII-f(46), 9VII-d(44), 9VII-c(43), 9VII-b(42)& 

9IV-h(28), show the highest SP docking scores, i.e., 

-5.494, -5.494, -5.001, -4.611 and -4.336, 

respectively when interacted with TYR222, MG502, 

ARG276, GLN11, ASN204. The hydrogen bond and 

pi-pi stacking interactions were shown by purple & 

green colored arrows, respectively. Compound 

9VII-f(46) shows 1 hydrogen bond with TYR222 at 

the oxygen atom of benzophenone moiety and 1 pi-

pi stacking interaction with TYR222 at the benzene 

ring of styrylquinoline moiety as shown in Fig. 7. 

Compound 9VII-d(44), 9VII-c(43) and 9VII-b(42) 

form 1 hydrogen bong with ARG276 amino acid at 

ether group of quinoline moiety & 1 pi-pi stacking 

interaction as shown in Fig. 8. Compound 9IV-h(28) 

creates 3 hydrogen bonds, 2 with ASN204 at ether 

groups of benzene ring & 1 with the oxygen atom of 

benzophenone moiety. It also shows 1 pi-pi stacking 

interaction with TYR222 at the benzene ring, as 

shown in Fig. 9. 

 

 
(A) 
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(B) 

 
(C) 

 

Figure 8. 2D Diagram of compounds interacting with tubulin: (A) 9VII-d(44), (B) 9VII-c(43) and (C) 9VII-

b(42) 

 

 

Figure 9. 2D Diagram of compound 9IV-h(28) interacting with tubulin 

 

3.5. ADME prediction 

The dataset's ADME properties of 48 styrylquinoline 

analogs were evaluated with the QikProp module of 

Schrodinger, as shown in Table 5. All compounds 

showed significant ADME properties like a molecular 

weight between 130.0 – 725.0, many hydrogen bond 
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acceptors between 2.0 – 20.0, several hydrogen bond 

donors between 0.0 – 6.0, number of rotatable bonds 

0-15. None of the compounds shows CNS activity (–

2 (inactive), +2 (active)). All the predicted properties 

of styrylquinoline analogs satisfy Lipinski’s rule of 

five and f Jorgensen’s three. 

 

Table 5. Result of ADME studies. 

Molecules #stars #rotor CNS mol_MW dipole 
Donor 

HB 

Acceptor 

HB 

Rule 

Of 

Five 

Rule 

Of 

Three 

9l-a(1) 2 9 0 442.513 2.619 1 4.5 1 1 

9I-b(2) 2 10 0 472.54 1.241 1 5.25 1 1 

9l-c(3) 2 11 0 502.566 1.535 1 6 2 2 

9I-d(4) 1 10 -1 458.513 1.353 2 5.25 1 1 

9I-e(5) 5 10 0 516.595 3.865 1 5.75 2 1 

9I-f(6) 4 10 0 516.595 4.164 0 4.75 2 1 

9I-g(7) 4 10 0 504.584 1.631 1 4.25 2 1 

9I-h(8) 5 10 0 504.584 2.066 1 4.25 2 1 

9II-a(9) 3 9 0 456.54 1.278 1 4.5 1 2 

9II-b(10) 2 10 0 486.566 1.374 1 5.25 1 2 

9II-c(11) 2 10 0 486.566 1.374 1 5.25 1 2 

9II-d(12) 4 10 -1 472.54 3.931 2 5.25 1 2 

9II-e(13) 6 10 -1 530.622 3.418 1 5.75 2 1 

9II-f(14) 6 10 0 530.622 4.089 0 4.75 2 1 

9II-g(15) 6 10 0 518.611 2.235 1 4.25 2 1 

9II-h(16) 6 10 0 518.611 2.111 1 4.25 2 1 

9III-a(17) 2 10 0 472.54 1.576 1 5.25 1 2 

9III-b(18) 3 11 0 502.566 1.583 1 6 2 2 

9III-c(19) 2 12 0 532.592 4.23 1 6.75 2 2 

9III-d(20) 1 11 -1 488.539 3.567 2 6 1 2 

9III-h(21) 6 11 0 534.61 1.186 1 5 2 2 

9IV-a(22) 2 11 0 502.566 3.311 1 6 2 2 

9IV-b(23) 3 12 0 532.592 2.026 1 6.75 2 2 

9IV-c(24) 3 13 0 562.618 4.084 1 7.5 2 2 

9IV-d(25) 3 12 -1 518.565 4.306 2 6.75 2 2 

9IV-e(26) 5 12 -1 576.648 4.721 1 7.25 2 1 

9IV-g(27) 6 12 0 564.637 3.784 1 5.75 2 1 

9IV-h(28) 6 12 0 564.637 2.876 1 5.75 2 2 

9V-a(29) 3 12 0 532.592 3.311 1 6.75 2 2 

9V-b(30) 3 13 0 562.618 4.97 1 7.5 2 2 

9V-c(31) 5 14 -1 592.644 5.712 1 8.25 3 2 
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9V-d(32) 3 13 -1 548.591 5.36 2 7.5 2 2 

9V-e(33) 4 13 -1 606.674 4.539 1 8 2 2 

9V-f(34) 6 13 0 606.674 5.307 0 7 2 2 

9V-g(35) 7 13 0 594.663 5.94 1 6.5 2 2 

9VI-a(36) 2 9 1 460.504 4.583 1 4.5 1 1 

9VI-b(37) 2 10 0 490.53 3.288 1 5.25 1 1 

9VI-c(38) 2 11 0 520.556 3.679 1 6 2 2 

9VI-d(39) 1 10 0 476.503 4.293 2 5.25 1 1 

9VI-g(40) 1 10 0 476.503 4.293 2 5.25 1 1 

9VII-a(41) 1 12 -2 489.527 3.294 3 5.5 1 1 

9VII-b(42) 1 13 -2 519.553 2.723 3 6.25 2 2 

9VII-c(43) 3 14 -2 549.579 4.085 3 7 3 2 

9VII-d(44) 1 13 -2 505.526 4.552 4 6.25 1 2 

9VII-e(45) 4 13 -2 563.609 4.274 3 6.75 2 1 

9VII-f(46) 5 13 -2 563.609 4.853 2 5.75 2 1 

9VII-g(47) 5 13 -2 551.598 4.158 3 5.25 2 1 

9VII-h(48) 5 13 -2 551.598 2.991 3 5.25 2 1 

 

4. Conclusion 
 

In the present study, we used a computational 

approach to ascertain the best possible molecules 

from a dataset of 48 styrylquinoline analogs obtained 

from the literature. 3D pharmacophore model has 

been developed using the PHASE module of 

Schrodinger, and the best hypothesis, HHRRR_1, was 

selected. Atom-based 3D QSAR module generated 

through Maestro v12.1 module and the selected model 

showed a high coefficient of determination (R2 = 

0.8624) and cross-validation coefficient (Q2 = 0.6707) 

with low RMSE (0.18) and SD (0.1841). The contour 

map analysis unveiled the importance of various 

features (hydrogen bond donor, hydrophobic group, 

electron-withdrawing groups) in determining the 

structural requirements necessary for binding the 

inhibitors. A molecular docking study was performed 

using the Glide module of Schrodinger into the 

binding site of tubulin. The receptor-ligand complex 

was stabilized by hydrogen bonding and pi-pi 

stacking interaction, and compound 9VII-f(46) shows 

the best docking score. The ADME analysis was 

performed through the QikProp module of 

Schrodinger, which provides an idea about the drug-

like property and possible toxicity associated with the 

receptor. All the predicted properties of 

styrylquinoline analogs satisfy Lipinski’s rule of five, 

which indicates their drug-like potential. I hope the 

present studies may be helpful to the researchers in 

the discovery of novel anticancer agents. 
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