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Abstract: Non-small cell lung cancer (NSCLC) has evolved into the deadliest in the present scenario. The 

progression of NSCLC is mainly due to the dysregulation of the tyrosine kinase family's epidermal growth factor 

receptor (EGFR). Thus, EGFR has been widely studied as a major target in the treatment of NSCLC, but the lack 

of selectivity and drug resistance limit the use of existing therapeutic agents. Considering the urgent necessity for 

the advanced development of EGFR inhibitors, we have implemented a three-dimensional structure-activity 

relationship (3D QSAR), molecular docking, and MMGBSA studies on a series of pyrimidine derivatives. In the 

3D QSAR, the comparative molecular field analysis model (CoMFA) was obtained with a correlation coefficient 

(r2) = 0.698, cross-validated correlation coefficient (q2) = 0.541, and predictive r2 (r2
pred) = 0.509. The comparative 

molecular similarity indices analysis (CoMSIA) model also displayed similar results with r2 = 0.72, q2 = 0.586, 

and r2
pred= 0.495. The statistical parameters fulfill the acceptability criteria of the models. Docking studies revealed 

the binding interactions of the pyrimidine derivatives with double mutant EGFRL858R/T790M. Docking scores of the 

top two selected compounds 29 and 34 were 92.99 and 92.13, respectively. Analyzing 3D QSAR contour plots 

and docking results reviewed some important structural attributes of EGFR L858R/T790M selective inhibitors, which 

directed the designing of some new molecules. The designed compounds showed good predictive activity and 

exhibited higher binding interactions with EGFRL858R/T790M than the reference ligand gefitinib. Moreover, to 

evaluate the binding of selected top hits from docking and designed compounds, MMGBSA (Molecular 

Mechanics-Generalized Born Surface Area) analysis was performed, which revealed that the designed compound 

(N7) showed a good binding affinity with EGFRL858R/T790M (dG = -68.59 kcal/mol) as compared to other 

compounds. Further, in silico ADME predictions revealed the drug-likeness of the designed compounds. Thus, 

this work will guide researchers in future developments of pyrimidine derivatives as EGFR inhibitors.  
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Abbreviations: 
 

3D QSAR- Three-Dimensional Quantitative Structure-Activity Relationship 

ADME- Absorption Distribution Metabolism Excretion  

BBB- Blood Brain Barrier 

CoMFA- Comparative Molecular Field Analysis 

CoMSIA- Comparative Molecular Similarity Indices Analysis 

EGFR- Epidermal Growth Factor Receptor 

EGFRwt- Epidermal Growth Factor Receptor wild type 

GA- Genetic Algorithm  

GOLD- Genetic Optimization for Ligand Docking 

LOO- Leave One Out 
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MMGBSA-Molecular Mechanics-Generalized Born Surface Area 

MSA- Multiple Sequence Alignment 

NSCLC- Non-Small Cell Lung Cancer 

ONC- Optimal Number of Components 

PDB- Protein Data Bank  

PLS- Partial Least Square 

SEE- Standard Error of Estimate 

TKIs- Tyrosine Kinase Inhibitors 

 

1. Introduction 
 

In today’s world, non-small cell lung cancer (NSCLC) 

has become the deadliest form of lung cancer, with an 

alarming number of cases and death counts 1. In 

almost 50% of NSCLC patients, epidermal growth 

factor receptor (EGFR) overexpression and 

dysregulation of related downstream signaling are 

reported 2. The EGFR (a receptor tyrosine kinase 

family member) controls vital cellular activities such 

as cell proliferation, migration, differentiation, and 

apoptosis through signaling pathways 3. The signaling 

pathway gets triggered when a ligand molecule binds 

at the specific binding site, stabilizes the dimer 

structure of the receptor, and auto-phosphorylation of 

tyrosine residue within the intracellular kinase domain 

takes place. Therefore, inhibition of the EGFR 

tyrosine kinase receptor has evolved as a promising 

approach to treating NCSLC 4,5. But the incidence of 

drug resistance due to several mutations of EGFR 

receptor limits the use of available drugs. The first-

generation EGFR tyrosine kinase inhibitors (EGFR-

TKIs) gefitinib and erlotinib, approved by US Food 

and Drug Administration in 2002 and 2004 6, have 

shown effective tumor regression against NSCLC, 

especially in patients with EGFR-sensitive mutants 

(e.g. EGFRL858R) 7-9. Despite clinical significance, the 

efficacy of first-generation inhibitors was lost because 

of acquired T790M point mutation (Threonine790→ 

Methionine790) in EGFR, constituting almost 50% of 

clinically developed resistance cases 6. Though this 

acquired drug resistance was overcome with second-

generation irreversible EGFR-TKIs such as afatinib 

and neratinib, dose-limiting toxicities and side effects 

like diarrhea and skin rashes were also observed 

simultaneously due to loss of selectivity on EGFR 

wild-type (EGFRwt) 10,11. Further efforts have been 

made to overcome drug resistance related to T790M 

mutation by developing third-generation EGFR-TKIs 

(e.g. osimertinib). The third-generation EGFR-TKIs 

have shown covalent binding with Cys797 residue 

and exhibited good selectivity over EGFRwt, 

reducing the chances of side effects 12,13. 

Even though promising results were reported, third-

generation inhibitors certainly bring newly acquired 

resistances like C797S mutation in EGFR 6. 

Therefore, it is of great value to develop novel EGFR 

inhibitors with better selectivity towards EGFR. 

Several works have reported substituted pyrimidine 

derivatives as EGFR inhibitors exhibiting good 

selectivity against mutant EGFR. Chang and co-

workers have synthesized a series of pyrimido-

pyrimidine derivatives and showed potential 

inhibitory activity against EGFR mutants 6. Ji and the 

group synthesized a novel series of 6-alkenylamides 

substituted 4-anilinothieno pyrimidines and evaluated 

them as irreversible inhibitors. Many of these 

compounds exhibited good potency against EGFR 

wild type and EGFRT790M/L858R mutant type 14. 

Recently, Zhang et al. have designed and developed a 

novel series of pyrido-pyrimidine derivatives to 

overcome acquired drug resistance, showing exciting 

results that can be accounted for further 15. 

To better understand the structural requirements of 

pyrimidine derivatives to acquire more selective and 

potent EGFR inhibitors, we have utilized a combined 

molecular modeling strategy, including 3D QSAR, 

molecular docking, and MMGBSA analysis, with in 

silico ADME predictions. CoMFA and CoMSIA-

based 3D QSAR studies were performed to develop 

statistically significant models, which will further 

help identify important structural attributes. 

Molecular docking studies were conducted to 

understand the most likely binding interactions 

between the compounds and the EGFR. To compute 

the binding free energy of docked compounds, 

MMGBSA analysis was performed. While in silico, 

ADME studies assisted in finding out the drug-

likeliness of the molecules. The valuable structural 

information of pyrimidine derivatives identified from 

our research is believed to help design more selective 

and potent EGFR-TKIs.  

 

2. Materials and methods 
 

2.1. Dataset 

A total of 38 pyrimidine derivatives, along with their 

inhibitory activities, were taken from the literature 6,15. 

All the biological activity values (IC50) were 

represented as pIC50 (-logIC50). This is presented in 

Table 1. 
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Table 1. EGFRL858R/T790M inhibitors with their actual and predicted pIC50 values. 

        
 

Template A (1-20)               Template B (21-30)            Template C (31-38) 

 
Noa R1 R2 R3 Actual 

pIC50 

Pred-pIC50 

CoMFA CoMSIA 

 

 

01* 

 

 

2’-MeO 

 

methyl 

 

8.5031 

 

8.0995 

 

8.1266 

 

02 

 

 

2’-MeO 

 

methyl 

 

7.9393 

 

8.4423 

 

8.4229 

 

03* 

 

 

2’-MeO 

 

methyl 

 

7.4385 

 

8.1506 

 

8.1021 

 

 

04* 

 

 

2’-MeO 

 

methyl 

 

7.5399 

 

8.031 

 

8.1359 

 

 

05 

 

 

2’-MeO 

 

methyl 

 

8.2865 

 

8.4095 

 

8.4492 

 

06 

 

 

2’-MeO 

 

methyl 

 

8.284 

 

8.1704 

 

8.0999 

07 H 

 
H methyl 7.5482 7.794 7.8832 

 

08 

 

 

H 

 

methyl 

 

8.9245 

 

8.4697 

 

8.5152 
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09 

 

 

3’-MeO 

 

methyl 

 

8.6904 

 

8.439 

 

8.491 

 

10 

 

 

2’-EtO 

 

methyl 

 

8.1487 

 

8.0226 

 

8.0669 

 

11 

 

 

2’-Pr(i)O 

 

methyl 

 

7.4401 

 

7.9706 

 

8.019 

 

12 

 

 

2’-Me 

 

methyl 

 

8.3788 

 

8.4792 

 

8.5134 

 

13 

 

 

2’-MeO 

 

i-propyl 

 

8.3546 

 

8.3575 

 

8.2498 

 

14 

 

 

2’-MeO 

 

cyclo-propyl 

 

8.2204 

 

8.5873 

 

8.5618 

 

15* 

 

 

2’-MeO 

 

phenyl (Ph) 

 

9.0088 

 

8.1239 

 

8.1099 

 

16 

 

 

2’-MeO 

 

2-naphthyl 

 

8.6126 

 

8.0517 

 

8.0914 

 

17 

 

 

2’-MeO 

 

benzyl 

 

9.0315 

 

8.1615 

 

8.1105 
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18* 

 

 

2’-MeO 

 

4-biphenyl 

 

8.3335 

 

8.1855 

 

8.2439 

 

19 

 

 

2’-MeO 

 

4-phenoxyphenyl 

 

8.4473 

 

8.3802 

 

8.51 

 

20* 

 

 

2’-MeO 

 

4-benzoxyphenyl 

 

8.2 

 

8.4825 

 

8.5331 

 

21 

 

 

pyrrolidin-1-yl 

 

-NHPh 

 

7.0706 

 

7.5579 

 

7.5389 

 

22 

 

 

pyrrolidin-1-yl 

 

-NHPh 

 

7.1831 

 

7.1292 

 

7.1828 

 

23 

 

 

piperidin-1-yl 

 

-NHPh 

 

7.3468 

 

7.1093 

 

7.1575 

 

24 

 

 

piperidin-1-yl 

 

-NHPh 

 

7.6345 

 

7.1093 

 

7.1575 

 

25* 

 

 

morpholine-4-yl 

 

-NHPh 

 

7.2741 

 

7.6586 

 

7.6124 

 

26 

 

 

morpholine-4-yl 

 

-NHPh 

 

7.2388 

 

7.1207 

 

7.1756 
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27 

 

 

morpholine-4-yl 

 

-NHPh 4-F 

 

7.5406 

 

7.1348 

 

7.198 

 

28 

 

 

morpholine-4-yl 

 

-NHPh-2,4-diF 

 

7.5229 

 

7.7083 

 

7.6296 

 

29 

 

 

 

-NHPh 

 

7.3556 

 

7.1293 

 

7.1165 

 

30 

 

 

 

-NHPh-4-F 

 

7.4685 

 

7.4085 

 

7.3881 

Noa Linker 
Actual 

pIC50 

Pred-pIC50 

CoMFA CoMSIA 

31 

 

 

7.4365 

 

7.7211 

 

7.6179 

32 

 

 

7.5768 

 

7.7211 

 

7.6179 

33 

 

 

6.786 

 

7.1137 

 

7.0886 

34* 

 

 

6.4424 

 

7.1137 

 

7.0886 
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35* 

 

 

6.9731 

 

7.1313 

 

7.0547 

36 

 

 

6.6232 

 

7.1313 

 

7.0547 

37 

 

 

6.8854 

 

7.1462 

 

7.0613 

38* 

 

 

7.6321 

 

7.1462 

 

7.0613 

aCompound number, *test set compounds. 

 

2.2. QSAR study 

2.2.1. Dataset division 

The collected compounds were divided into two sets, 

i.e., training and testing. The training set comprises 28 

compounds (75%) for model building. Whereas 10 

compounds (25%) were kept in the test set to predict 

the build models 16.  

 

2.2.2. Energy minimization and alignment 

In order to obtain the best-desired conformer of each 

molecule, energy minimization was performed using 

SYBYL X-2.1.1 software. During energy 

minimization, the force field was set to ‘Tripos’, 

‘Powell gradient was chosen with a convergence of 

0.005 kcal/(mol*Å), and a maximum iteration count 

of 1000 was applied. The Gasteiger-Huckel method 

was selected for the calculation of partial atomic 

charge. The lowest energy conformation of each 

molecule was used for QSAR studies 17. In the next 

step, molecular alignment was done. Molecular 

alignment is one of the most crucial steps while 

building 3D QSAR models. The most popular 

approaches for molecular alignment are maximum 

standard structure alignment and distill rigid 

alignment. In top typical structure alignment, other 

molecules in the dataset are aligned based on the 

available common structures concerning the template. 

While in distill rigid alignment, molecules are aligned 

according to their steric and electrostatic field on the 

template molecule 18. 

In our study distill rigid alignment type was applied to 

the training set for molecular alignment. Compound 

17, the most potent molecule in the dataset, was used 

as the template molecule. The structural alignment of 

the compounds is displayed in Figure 1. 
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(A)                                                                     (B) 

Figure 1. Molecular alignment. (A) template for alignment: compound 17, the red colored part of the structure is 

the core for alignment; (B) distill rigid alignment of training set compounds. 

 
2.2.3. Comparative molecular field analysis 

(CoMFA) 

In CoMFA, steric fields were calculated utilizing 

Lennard-Jones potentials, whereas Coulombic 

potentials were used to determine electrostatic fields. 

Aligned compounds were enclosed in a3D cubic 

lattice with a grid spacing of 2.0 Å. The automatically 

generated grid points use an sp3 carbon atom probe to 

calculate fields. 

 

2.2.4. Comparative molecular similarity indices 

analysis (CoMSIA) 

The CoMSIA method computed similarity indices at 

different points in a regularly spaced grid for the 

aligned training set compounds. It has multiple 

benefits over the CoMFA method, like robustness, no 

application of arbitrary cutoffs, and effortlessly 

interpretable contour maps. This method comprises 

the calculation of five fields (such as steric, 

electrostatic, hydrophobic, hydrogen bond donor, and 

hydrogen bond acceptor). Similar to CoMFA, grid 

spacing was maintained at 2 Å. 

 

2.2.5. Partial least square (PLS) analysis and 

internal validation 

The Partial Least Square method was applied to 

training set molecules to determine the correlation 

between the QSAR models and biological activities. 

The reliability of the developed models was assessed 

by implementing the leave-one-out (LOO) internal 

validation method. The LOO method measures the 

cross-validated correlation coefficient (q2) and the 

optimal number of components (ONC). While 

evaluating a model, other parameters considered are 

the square of non-cross-validation coefficient or 

squared correlation coefficient (r2) and standard error 

of estimate (SEE) 19. 

 

 

2.2.6. External validation 

The predictive ability of developed CoMFA and 

CoMSIA models was assessed with the help of test set 

compounds. The predictive factor r2 (r2
pred) was 

calculated considering the predicted activity of the 

test set compounds utilizing the following formula: 

rpred
2 =

x − y

x
 

Where x= Total of squared deviations between the 

activities of test set compounds and the mean activity 

of the training set compounds; y= Total of squared 

deviations between actual and predicted activities of 

test assigned compounds 20. 

 

2.3. Molecular docking 

Molecular docking was executed to explore 

appropriate binding interactions and poses employing 

GolD (Genetic Optimization for Ligand Docking) 5.2 

software. The target protein EGFRL858R/T790M 

crystal structure was retrieved from Protein Data 

Bank (PDB ID: 4I22) 21. In the protein preparation 

phase, polar hydrogens and gasteiger charges were 

added. The co-crystalized ligand was removed from 

the ligand binding site, all bound water molecules 

were deleted, and the binding site was specified using 

the ‘GOLD setup’. Previously saved multi-MOL2 

files of energy-minimized pyrimidine derivatives 

were used as ligands for the docking studies. To 

validate the docking protocol, a co-crystalized ligand 

(gefitinib) was extracted and re-docked in the same 

binding site of the EGFR protein. Then, the 

pyrimidine-based EGFR inhibitors were docked into 

the ATP binding cavity of the kinase domain of the 

protein. The Genetic Algorithm (GA) run was kept as 

10, and other parameters were kept as default in 

GOLD settings. Two fitness functions were applied, 

‘ChemPLP’ as the scoring function and ‘Chemscore  
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as rescoring function. Docking results were visualized 

in GOLD as well as in PyMOL viewer. 15 newly 

designed compounds were also docked at the same 

binding pocket using previously optimized 

parameters. 

 Docking was performed with GOLD 5.2 software. 

GOLD uses default scoring functions such as 

ChemPLP and Chemscore, which are obtained as 

positive values. In ChemPLP, the PLP function 

(fPLP) is used to model steric complementarity 

between protein and ligand. In addition to distance 

and angle dependence, hydrogen bonding and metal 

terms are also taken into account, which is represented 

as follows: 

fitnessPLP = - (wPLP. fPLP + Wlig-clash. f lig-clash 

+ wlig-tors. flig-tors +fchem-cov + wprot. fchem-prot 

+ wcons .fcons) 

fitnessChemPLP = fitnessPLP - (fchem-hb + fchem-

cho + fchem-met) 

The overall score is the negative value of the sum of 

the component energy terms. The highest fitness 

scores are, therefore, the best. 

Thus, GOLD docking scores are represented as a 

positive value but are considered the negative value of 

the sum of all components. 

 

2.4. Multiple sequence alignment 

Multiple sequence alignment (MSA) is an 

alignment of three or more biological sequences, 

usually protein, DNA, or RNA.MSA is often used to 

assess the sequence conservation of protein 

domains, tertiary and secondary structures, and even 

individual amino acids or nucleotides. Our study of 

aminoacid sequences of ten different species was 

taken from uniport (http://www.uniprot.org/). The 

organisms whose amino acid sequences of EGFR 

protein were used include Homo sapiens (Human), 

Drosophila melanogaster (Fruit fly), Mus musculus 

(Mouse), Macaca mulatta (Rhesus macaque), Rattus 

norvegicus (Rat), Mesocricetus auratus (Golden 

hamster), Xenopus tropicalis (Frog), Danio rerio 

(Zebrafish), Pelodiscus sinensis (Turtle), and 

Meleagris gallopavo (Wild turkey). The sequences 

were obtained in “.fasta” format and aligned in the 

PRALINE web server 

(http://www.ibi.vu.nl/programs/pralinewww/) in 

search of conserved residues of EGFR protein among 

different species. PRALINE (PRofileALIgnment) 

performs multiple alignments using a progressive 

approach. The BLOSUM62 matrix did scoring. The 

conservation is presented by color code, where the 

scale denotes 0 for the least conserved residue and 10 

for the most conserved residue. The conserved 

residues are considered to be functionally essential 

residues 22. 

 

2.5. Binding free energy analysis 

The binding free energy calculations were performed 

for top selected hits from docking and the designed 

compounds using the MMGBSA (Molecular 

Mechanics-Generalized Born Surface Area) method 

with the help of the Prime module of Schrodinger 

Maestro 9.3. The calculations were performed on 

docked protein-ligand complexes of top-ranked 

ligands. The binding energy is calculated as per 

equation 1. 

DG bind = E_complex (minimized) - E_ligand 

(minimized) -E_receptor (minimized)        (1) 

Prime calculations combine the OPLS_2005 force 

field, VSGB solvation model for polar solvation, and 

a nonpolar solvation term. Thus, the calculation uses 

various energy components (Eq. 2) 

DG bind = ∆EMM + ∆Gsolv + ∆GSA        (2) 

Where, 

EMM = molecular mechanical energy 

Gsolv = polar contribution towards solvation energy 

∆GSA= non-polar solvation term  

The prime outputs MMGBSA free energy of binding 

(Prime MMGBSA DG bind) of the selected 

complexes. 

 

2.6. In silico ADME and drug-likeness screening 

In silico predictions can be significant in screening 

early hits and can be applied before the laboratory 

synthesis of the designed compounds 23. ADME 

properties, which constitute the pharmacokinetic 

profile of a drug molecule, are essential in evaluating 

its pharmacodynamic activities. In silico predictions 

of newly designed compounds were performed with 

the SwissADMEonline prediction tool 

(http://www.swissadme.ch/) 24. 

Compounds were converted into their canonical 

‘SMILE’ format and put in the ‘SwissADME’ server. 

The software predicts the physicochemical properties, 

lipophilicity, water solubility, pharmacokinetics, 

drug-likeness, and synthetic accessibility of the 

compounds. 

 

3. Results and Discussion 
 

3.1. Results of QSAR study (CoMFA and 

CoMSIA) 

The statistical parameters obtained in the developed 

CoMFA and CoMSIA models are presented in     

Table 2.

 

 

 

 

https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Biological_sequence
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Conservation_(genetics)
https://en.wikipedia.org/wiki/Protein_domain
https://en.wikipedia.org/wiki/Protein_domain
https://en.wikipedia.org/wiki/Tertiary_structure
https://en.wikipedia.org/wiki/Secondary_structure
http://www.uniprot.org/
http://www.ibi.vu.nl/programs/pralinewww/
http://www.swissadme.ch/
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Table 2. Statistical parameters of the comparative molecular field analysis (CoMFA) and molecular 

similarity indices analysis (CoMSIA) models. 

 

Model         q2          r2      ONC    SEE        r2
pred 

                                         

                Relative contribution 

 
    S            E            D            H            A 

                                                            CoMFA        

    S           0.519    0.688     1        0.378       0.551          1.000        -             -              -               - 

    E           0.526    0.683     1        0.376       0.429             -          1.000        -              -               - 

   SE          0.541    0.698     1        0.360       0.509          0.498     0.502        -              -               - 

                                                            CoMSIA 

  SEH        0.605    0.728     1        0.348       0.289          0.268     0.403        -           0.329          - 

 SEHD      0.602    0.729     1        0.348       0.585          0.175     0.335     0.227      0.264          - 

 SEHA      0.587    0.719     1        0.354       0.016          0.203     0.303        -           0.245       0.250 

 SEDA      0.603    0.815     2        0.293       0.320          0.197     0.317     0.237          -           0.240 

 EHDA     0.593    0.821     2        0.288       0.293             -          0.309     0.222      0.242       0.226  

SEHDA    0.586    0.720     1        0.353       0.495          0.159     0.244     0.191      0.193       0.430 

 
q2: cross-validated correlation coefficient; r2: non-cross-validated correlation coefficient; ONC: optimal number 

of components; SEE: standard error of estimate; r2
pred: predictive correlation coefficient; S: steric fields; E: 

electrostatic fields; D: hydrogen-bond donor fields; H: hydrophobic fields; A: hydrogen-bond acceptor fields. 

 

As shown in Table 2, two descriptor fields of CoMFA, 

steric (S) and electrostatic (E) were used in all three 

possible combinations (S, E, and SE) to build the 

models. While in CoMSIA,‘S’, ‘E’, hydrophobic (H), 

hydrogen bond donor (D), and hydrogen bond 

acceptor (A) fields were used in combination. The 

statistical parameters of most of the models in       

Table 2 meet the desired internal validation criteria 

indicating the developed models' acceptance. Further, 

the generated models' predictive correlation 

coefficient (r2pred) was also calculated with the 

predicted activities of the respective test sets. The 

CoMFA model generated with ‘S’ field and the 

CoMSIA model generated with a combination of 

‘SEHD’ fields gave maximum external predictive 

ability (r2
pred 0.551 and 0.585, respectively). While 

CoMFA model developed with ‘SE’ fields 

combination and CoMSIA model with the ‘SEHDA’ 

fields combination also showed good predictive 

ability (r2
pred 0.509 and 0.495 respectively). In the 

latter two CoMFA and CoMSIA models, the best 

possible combination of fields was applied and thus 

considered further. In Table 2, we can see these two 

models exhibited good q2 (0.541 and 0.586), r2 (0.698 

and 0.72) along with a considerable SEE value (0.36 

and 0.353). In the selected CoMFA model, the relative 

contributions of ‘S’ and ‘E’ fields were 0.498 and 

0.502, respectively. It indicates a greater contribution 

of ‘E’ field. Contributions of ‘S’, ‘E’, ‘H’, ‘D’, and A 

fields in the selected CoMSIA model were 0.159, 

0.244, 0.191, 0.193, and 0.213, respectively. It was 

found that the E field has the highest contribution in 

the CoMSIA model, similar to CoMFA model.The 

scatter plots of actual versus predicted pIC50 values of 

training and test sets for the selected QSAR models 

are presented in Figure 2. Both models fit nicely along 

the diagonal line visible in the plots. The predictive 

power of the constructed models was also found to be 

satisfactory. The above results signify that the 

constructed models are powerful enough for further 

prediction of activities. 

 

     
(A)                                                                        (B) 

Figure 2. Scatter plot of actual versus predicted pIC50 values of the training set and test set compounds, for (A) 

CoMFA and (B) CoMSIA model. 
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3.1.1. Analysis of CoMFA Contours 

The ‘S’ and ‘E’ contour maps of the CoMFA model 

are represented in Figure 3. Compound 17, the 

template molecule (the most potent molecule in the 

dataset), was selected to represent contour maps. In 

the ‘S’ contour map, green contours indicate regions 

favorable for steric contributions, while the yellow 

contours represent unfavorable regions. A large 

yellow steric contour is seen around the benzyl 

substituent in CoMFA (Figure 3A), which suggests 

the unsuitability of steric substitution in this region for 

EGFR inhibitory activity. This can explain the more 

excellent biological activity of compound 15 with 

phenyl substitution compared to compound 20 with 

benzoxyphenyl substituent. The green contour around 

the piperazine ring and above the pyrimido-

pyrimidine indicate the presence of steric bulk in this 

region is necessary. This may explain why the 

piperazine ring as R1 substituent in compound 8 is 

more potent than compound 7, which contains 

hydrogen as a substituent. 

 

  
                                   (A)                                                                             (B) 

Figure 3. CoMFA contour maps presented with template compound 17. (A) CoMFA steric field contour map 

(green contour is favored; yellow contour is disfavored); (B) CoMFA electrostatic field contour map (blue contour 

is preferred for electropositive groups; red contour is favored for electronegative groups). 

 

A green contour near the –OCH3 group also suggests 

steric bulk favorability in this position. The blue and 

red ‘E’contours specify regions for suitability of 

electropositive and electronegative groups, 

respectively. Blue contours near the benzyl 

substituent in CoMFA electrostatic map (Figure 3B) 

suggest the suitability of electropositive groups in this 

area. Two red contours near the –OCH3 group indicate 

electronegative groups are favorable in this region. 

3.1.2. Analysis of CoMSIA Contours 

The ‘S’ and ‘E’ contour maps obtained in the 

CoMSIA model were the same as the CoMFA 

contours discussed earlier (Figure 3(A, B)). This 

section discusses the remaining fields of CoMSIA‘D’, 

‘A’, and ‘H’. The obtained CoMSIA contour maps are 

presented in Figure 4. 
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(A)                                                                     (B) 

  
                                  (C)                                                                               (D) 

 
                                                                         (E) 

Figure 4. CoMSIA steric field contour map (green contour is favored; the yellow outline is unfavored); (B) 

CoMSIA electrostatic field contour map (blue contour is preferred for electropositive groups; red contour is 

chosen for electronegative groups) ; (C) CoMSIA hydrogen donor field contour map (cyan contour is selected; 

purple contour is unfavored); (D) CoMSIA hydrogen acceptor field contour map (magenta contour is favored; 

red contour is unfavored); (E) CoMSIA hydrophobic field contour map (yellow contour is favored; white 

contour is unfavored) 
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In CoMSIA‘D’ field (Figure 4C), cyan contours 

denote the hydrogen bond donor group suitable area, 

whereas purple counters represent the hydrogen bond 

donor unsuitable area. For example, a large cyan 

contour above the 6th N of the pyrimido-pyrimidine 

ring suggests that the hydrogen bond donor group is 

desirable in this region. In contrast, a sizeable purple 

contour near the benzyl substituent indicates that the 

hydrogen bond donor in this area is unsuitable for 

activity. 

In ‘A’ field maps (Figure 4D), the magenta contour is 

for the favorable hydrogen bond acceptor region, 

while the red contour denotes regions where hydrogen 

bond acceptors are unfavorable. Magenta 

contoursseenabove2-methoxy aniline substituent and 

above 5th position of the pyrimido-pyrimidine ring 

suggests that the addition of hydrogen bond acceptor 

group in these regions could increase EGFR 

inhibitory activity. Conversely, one red contour near 

2nd and another near 3rd and 4th positions of the 

pyrimido-pyrimidine ring indicate that substitutions 

with hydrogen bond acceptors could decrease activity. 

The ‘H’ contour map is shown in Figure 4E, where 

yellow contours indicate favorable hydrophobic 

areas, while white contours suggest unfavorable 

hydrophobic areas. For example, two large yellow 

contours near the –para position of the benzyl 

substituent and above 6th position of the pyrimido-

pyrimidine ring suggest the favorability of 

hydrophobic groups in these regions. Conversely, a 

large white contour near 4th and 6th position of the 

pyrimido-pyrimidine ring indicates that hydrophobic 

substituents in this position are undesirable. Further 

white contour, the near-meta position of benzyl 

substituent, and around piperazine substituent are also 

disfavored for biological activity. 

 

3.2. Molecular Docking results 

Docking studies were performed to understand the 

probable binding interactions between the pyrimidine 

derivatives and the EGFRL858R/T790Mtyrosine 

kinase. Before docking dataset compounds, the 

docking protocol was validated by re-docking the co-

crystalized ligand gefitinib into the binding cavity of 

EGFR. After re-docking, the co-crystalized ligand 

attained a similar conformation as its original 

conformation in crystalized protein structure, thereby 

successfully validating our docking method 

(Supplementary Figure 1, p. 144). Then, all 38 

molecules were docked in the ATP binding pocket of 

the kinase domain of the EGFR. The docking scores 

of the dataset molecules and co-crystalized gefitinib 

are presented in Table 3.  

 

Table 3. Docking scores of the dataset compounds. 

Compound 

No. 
Docking Score (ChemPLP. Fitness) Docking Rescore (Chemscore. Fitness) 

1 78.24 22.64 

2 73.39 21.98 

3 79.20 27.73 

4 76.45 20.62 

5 67.14 24.18 

6 77.23 26.89 

7 81.77 26.58 

8 75.24 27.46 

9 79.36 23.51 

10 73.45 22.01 

11 76.60 25.01 

12 74.48 25.50 

13 83.92 21.99 

14 84.56 25.87 

15 87.56 29.67 

16 82.69 26.44 

17 88.26 26.08 

18 88.22 26.95 

19 90.51 26.47 

20 87.34 21.74 
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21 78.01 29.89 

22 85.25 31.69 

23 86.76 32.33 

24 86.60 32.77 

25 79.84 31.13 

26 89.08 30.36 

27 79.15 25.76 

28 73.96 23.87 

29 92.99 31.95 

30 91.33 27.86 

31 89.63 31.26 

32 85.44 25.95 

33 89.52 25.51 

34 92.13 31.70 

35 87.45 30.23 

36 86.26 30.20 

37 84.86 28.14 

38 88.12 31.05 

Gefitinib 79.19 29.02 

 

Based on docking scores, five top-ranked compounds 

29, 34, 26, 15, and 35 were selected (Table 4). 

Compound 29 possesses the highest docking score 

(92.99), and all the selected compounds have a more 

excellent docking score than gefitinib (79.19)          

(Table 3).  

 

Table 4. Chemical structures and IUPAC names of top five selected dataset compounds. 

S. No. Compound Chemical Structure & IUPAC Name 

1 29 

 
(1-(6-(5-(4-(dimethylamino) piperazin-1-yl)pyridin-2-ylamino) 

-2-(phenylamino)pyrido[3,4-d]pyrimidin-4-yl)piperidin-4-yl)methanol 

2 34 

 
(S)-N-(1-(6-(5-(4-methylpiperazin-1-yl)pyridin-2-ylamino)-2-

(phenylamino)pyrido[3,4-d]pyrimidin-4-yl)piperidin-3-yl)acrylamide 
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3 26 

 
N6-(5-(4-(dimethylamino)piperidin-1-yl)pyridin-2-yl)-4-morpholino-N2-

phenylpyrido[3,4-d]pyrimidine-2,6-diamine 

4 15 

 
N-(3-(7-(2-methoxy-4-(4-methylpiperazin-1-yl)phenylamino)-2-oxo-3-phenyl-3,4-

dihydropyrimido[4,5-d]pyrimidin-1(2H)-yl)phenyl)acrylamide 

5 35 

 
(R)-1-(3-(6-(5-(4-methylpiperazin-1-yl)pyridin-2-ylamino)-2-

(phenylamino)pyrido[3,4-d]pyrimidin-4-ylamino)pyrrolidin-1-yl)prop-2-en-1-one 

 

The molecular surface of the mutant EGFR protein 

with gefitinib (pink) and compound 29 (blue) is 

shown in Figure 5A. It is seen that compound 29 well 

occupied the binding cavity similar to gefitinib. 

Compound 29 well occupied the fit points generated 

by GOLD software (Figure 5B). 

 

 
                                          (A)                                                               (B) 
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(C) 

Figure 5. Docking results. (A) Molecular surface of the protein presented with co-crystalized ligand (pink) and 

compound 29 (blue) at the binding cavity of the protein; (B) Well occupancy of the appropriate points (green 

dots) by compound 29 (violet); (C) Binding interactions in between co-crystalized ligand gefitinib and mutant 

EGFRL858R/T790M. 

 

The hydrogen bond (H-bond) interactions of the 

selected compounds 29, 34, 26, 15, and 35 and the co-

crystalized ligand gefitinib are presented in Table 5. 

The oxygen atom of co-crystalized ligand gefitinib 

showed H-bond interaction with the nitrogen atom of 

MET 793 amino acid residue of EGFRL858R/T790M at a 

distance of 3.4 Å (Figure 5C). Compound 29, having 

the highest docking score (92.99) (Table 5), formed 

two H-bonds with SER 720.  

 
Table 5. Interaction analysis of selected five top ranked dataset compounds and co-crystalized ligand gefitinib. 

S. 

No 
Compound 

Docking 

Score 

(ChemPLP) 

Rescore 

(Chemscore) 

Interacting 

residues 

Type of 

interaction 

Bond distance 

(Å) 

1 Gefitinib 79.19 29.02 MET 793 H-Bond 3.4 

2 29 92.99 31.95 SER 720 2H-Bond 2.863 & 3.062 

3 34 92.13 31.70 MET 793 H-Bond 2.679 

4 26 89.08 30.36 
ASP 855 

MET 790 

H-Bond 

Short contact 

2.931 

2.87 

5 15 87.56 29.67 

ARG 841 

ASP 855 

LYS 745 

H-Bond 

H-Bond 

H-Bond 

2.825 

2.581 

3.047 

6 35 87.45 30.23 
THR 854 

SER 720 

H-Bond 

H-Bond 

3.013 

3.001 

 

The first H-bond was between –NH group of SER 720 

and the hydroxyl group of the ligand at a distance of 

2.863 Å, and the second one was between the 

carbonyl group of SER 720 and the hydroxyl group of 

the ligand at a distance of 3.062 Å (Figure 6A). 

Compound 34, having the second highest docking 

score (92.13) (Table 5), showed H-bond interaction 

with MET 793 amino acid similar to the co-

crystalized ligand gefitinib. The –NH group of 

compound 34 interacted with the carbonyl group of 

the hinge region MET 793residue at a distance of 

2.679 Å (Figure 6B). In compound 26, -NH group 

formed an H-bond with a carbonyl group of ASP 855 

at a distance of 2.931 Å (Figure 6C). Further, 

Compound 15 also showed H-bond interaction with 

ASP 855 residue and formed two new H-bonds with 

ARG 841 and LYS 745(Figure 6D). While compound 

35 formed H-bond with SER 720 similar to compound 

29 (Figure 6E). Besides MET 793 residue, new H-

bond interactions with residues like ASP 855, SER 

720 are expected to reflect in the improvement of the 

binding specificity of the ligands into the binding 

pocket of double mutant EGFR L858R/T790M. 
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(A)                                                                               (B) 

 
(C)                                                                               (D) 

 

 
(E) 

Figure 6. Binding interactions. (A) in between compound 29 (yellow) and amino acid residues (labeled in 

black); (B) in between compound 34 (blue) and amino acid residues; (C) in between compound 26 (violet) and 

amino acid residues; (D) in between compound 15 (pink) and amino acid residues; (E) in between compound 35 

(green) and amino acid residues. 

 

3.3. Multiple Sequence Alignment results 

Multiple sequence alignment was performed to check 

whether the amino acids of EGFR protein interacted 

with the molecules and whether the other amino acids 

present in the binding site are conserved amino acid 

residues. The alignment of amino acid residues of 

different organisms is shown in Figure 7. The color 

index from blue to red indicates the increase in the 

consistency of conservation (unconserved to 

conserved). Figure 8 presents the character of 

preserving crucial amino acid residues in a simplified 

form. Here it can be observed that interacting amino 

acids MET 793, ASP 855, ASP 800, ARG 841, THR 

854, and MET 790in the docking study of EGFR 

protein are highly conserved among all species. 

Conservation confirms that the functionally 

significant amino acid residues among different 

species have interacted in the docking study. The 

alignment scores and results are summarized in            

Table 6.
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Figure 7. Alignment of amino acid sequences of EGFR obtained from ten different species as Homo sapiens 

(Human), Drosophila melanogaster (Fruit fly), Mus musculus (Mouse), Macaca mulatta (Rhesus macaque), 

Rattus norvegicus (Rat), Mesocricetus auratus (Golden hamster), Xenopus tropicalis (Frog), Danio rerio 

(Zebrafish), Pelodiscus sinensis (Turtle), and Meleagris gallopavo (Wild turkey). The conservation index colors 

residues. 

 

Figure 8. Simplified presentation of conservation consistency of important amino acid residues. 
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Table 6. Results of multiple sequence alignment of EGFR by PRALINE server. 

Alignment results for amino acids of EGFR 

Alignment score = 704656.00 

Alignment score per aligned residue pair = 15.43 

Sequence identities = 31475 

Percent sequence identity = 0.69 

Number of sequences = 10 

Alignment length = 1436 

Number of residues = 11347 

Number of gaps = 3013 

 

3.4. Designing of New Compounds, QSAR, and 

docking predictions  

Based on structural attributes obtained from CoMFA 

and CoMSIA contour mapsin3D QSAR and analysis 

of docking results, several new pyrimidine-based 

tyrosine kinase inhibitors could be designed, which 

may help to overcome the drug resistance developed 

over the double mutant EGFRT790M/L858R to obtain 

improved biological activity against non-small cell 

lung cancer. The chemical structures of the newly 

designed compounds and their inhibitory activities 

against EGFRL858R/T790M predicted by the CoMFA and 

CoMSIA models are enlisted in Table 7.  

 

 

Table 7. Predicted biological activities of the designed compounds. 

 
Template 

No. R1 R2 R3 

CoMFA 

Predicted 

pIC50 

CoMSIA 

Predicted 

pIC50 

N1 

 

 
 

7.7845 7.8712 

N2 

 

 

 

7.7653 7.8706 

N3 

 

 

 

7.7898 7.8694 

N4 

 

 
 

7.8046 7.8725 
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N5 

 

 
 

7.7762 7.8621 

N6 

 

 

 

7.7946 

7.8865 

 

 

 

N7 

 

 
 

7.8663 7.8726 

N8 

  
 

7.8162 7.8837 

N9 

 

 
 

7.8407 7.8755 

N10 

 

 
 

7.8021 7.8729 

N11 

 
 

 

7.8339 7.8695 

N12 

 
 

 

7.8897 7.8652 
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N13 

 
 

 

7.8855 

7.8663 

 

 

 

 

 

N14 

 
 

 

7.8759 7.8698 

N15 

 
 

 

7.8392 7.8567 

 

The predictions for the newly designed pyrimidines 

are quite significant. Further, these compounds were 

docked in EGFRL858R/T790M protein (PDB ID- 4I22) to 

investigate the binding interactions. The docking 

scores with binding interactions of a few selected, 

designed compounds N7, N4, and N1 are presented in 

Table 8. Among them, the docking score of compound 

N7 (79.59) is higher than the reference ligand 

gefitinib (79.19). Compound N7 formed H-bond with 

MET 793 similar to the co-crystalized gefitinib and 

dataset compound 34 at a distance of 2.665 Å and with 

ASP 800 at a distance of 2.894 Å (Figure 9). 

Compounds N4 and N1 also showed H-bond 

interaction with MET 793. Further, H-bonding with 

SER 720residue is observed in N4, similar to 

compound 29 of the dataset (Supplementary Figure 2, 

p. 144) On the basis of information collected from the 

contour plots in CoMFA and CoMSIA models and 

interactions identified from docking studies, some 

important structural requirements are highlighted in 

Figure 10. 

 

Table 8. Docking scores and interactions of newly designed compounds. 

S. No 
Compound 

Name 

Docking Score 

(ChemPLP) 

Rescore 

(Chemscore) 

H-bond interactions with residues & 

distances (Å) 

1 N7 79.5964 22.1072 MET 793 (2.665 Å), ASP 800 (2.894 Å) 

2 N4 77.3696 21.4103 MET 793 (2.704 Å), SER 720 (3.068 Å) 

3 N1 75.3703 22.7289 MET 793 (2.729 Å), ASP 800 (2.94 Å) 

 

 

Figure 10. Identified structural requirements of novel pyrimidine derivatives as EGFRT790M/L858R inhibitors 

summarized on template compound 17. 

 

Among them, the docking score of compound N7 

(79.59) is higher than the reference ligand gefitinib 

(79.19). Moreover, compound N7 formed H-bond  

 

with MET 793 similar to the co-crystalized gefitinib 

and dataset compound 34 at a distance of 2.665 Å and 

with ASP 800 at a distance of 2.894 Å (Figure 9). 
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Compounds N4 and N1 also showed H-bond 

interaction with MET 793. Further, H-bonding with 

SER 720residue is observed in N4, similar to 

compound 29 of the dataset (Supplementary             

Figure 2). 

 

 

Figure 9. Binding interactions in between compound N7 and EGFRL858R/T790M protein. 

 

3.5. Binding Free energy analysis 

The docked complexes of the top-scored ligands (34 

and 29) and newly designed compound (N7) were 

further proceeded for binding free energy calculations 

using the MMGBSA method. Interestingly, 

MMGBSA analysis computed that the binding free 

energy of N7 (dG=-68.59 kcal/mol) was found to be 

greater than compound 29 (dG= -62.42 kcal/mol) and 

compound 34 (dG=-58.37 kcal/mol), which revealed 

stronger binding of our designed compound (N7) as 

compared to dataset ligands. This is as per our 

expectations, as compound N7 was designed by 

optimizing the different parameters based on the 

interpretation of COMFA and COMSIA results.  
 

3.6. ADME and drug-likeness prediction of 

designed compounds 

Before proceeding with laboratory synthesis, in silico 

ADME predictions can be beneficial to collect 

necessary information about the prepared compounds' 

pharmacokinetics and druggability. The data on 

pharmacokinetic and drug-likeness properties of the 

designed compounds obtained from the ADME 

screening is presented in Table 9. 

 

Table 9. In silico pharmacokinetics and drug-likeness predictions of newly designed compounds. 

 No.                           Pharmacokinetics                 Drug likeness 

 Log S 

(ESOL)a 

GI 

absorption 

BBB 

permeant 

Log Po/w 

(MLOGP)b 

Lipinski 

rule; 

Violations 

Ghose 

rule; 

Violations 

Bio-

availability 

score 

Synthetic 

accessibility 

N1 -4.39 High No 2.4 Yes; 0 Yes; 0 0.55 3.19 

N2 -4.39 High No 2.4 Yes; 0 Yes; 0 0.55 3.17 

N3 -4.39 High No 2.4 Yes; 0 Yes; 0 0.55 3.19 

N4 -4.63 High No 2.62 Yes; 0 Yes; 0 0.55 3.28 

N5 -4.9 High No 2.86 Yes; 0 No; 2 0.55 3.88 

N6 -3.8 High No 2.18 Yes; 0 Yes; 0 0.55 3.12 

N7 -4.6 High No 1.96 Yes; 0 No; 1 0.55 3.76 

N8 -4.38 High No 2.53 Yes; 0 No; 2 0.55 3.71 

N9 -4.77 High No 2.96 Yes; 0 Yes; 0 0.55 3.29 

N10 -4.82 High No 2.93 Yes; 0 Yes; 0 0.55 3.02 

N11 -4.62 High No 2.89 Yes; 0 Yes; 0 0.55 3.38 

N12 -4.62 High No 2.89 Yes; 0 Yes; 0 0.55 3.38 

N13 -4.02 High No 2.4 Yes; 0 Yes; 0 0.55 3.32 

N14 -4.62 High No 2.89 Yes; 0 Yes; 0 0.55 3.38 

N15 -4.26 High No 2.62 Yes; 0 Yes; 0 0.55 3.41 

aESOL: Topological method implemented from (Delaney, 2005). Solubility class: Log S scale. Insoluble < -10 < 

Poorly < -6 < Moderately < -4 < Soluble < -2 <Very < 0 < Highly. bMLOGP: Topological method implemented 

by (Moriguchi et al., 1992). 
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According to the pharmacokinetic properties 

obtained, all compounds showed moderate solubility 

except compound N6 which is soluble in the Log S 

(ESOL) scale implemented from 25. All the 

compounds possess high gastrointestinal (GI) 

absorption, and no one has the blood-brain barrier 

(BBB) permeability. The lipophilicity (MLOGP) of 

the compounds is well under the desired value 

(MLOGP ≤ 5) 27. The Lipinski 27 and Ghose 28 filters 

were applied to check the drug-likeness parameter. 

The Lipinski (Pfizer) filter is the most popular rule of-

five for drug candidate selection, states that 

absorption of a compound is more likely to take place 

when the molecular weight is under 500 g/mol, Log P 

value is below 5, and the compound is having a 

maximum of 5 hydrogen bond donor and 10 hydrogen 

bond acceptor atoms. Interestingly each of the 

designed compounds passed the Lipinski rule with 

zero violation. Ghose rule screens drug-like 

candidates based on the following limits of 

parameters: molecular weight between 160 and 480 

g/mol, Log P value ranging between -0.4 to 5.6, molar 

refractivity between 40 and 130, and the total number 

of atoms between 20 and 70. Maximum designed 

compounds met the criteria of the Ghose rule with no 

violation except compounds N5 and N7 with two and 

N8 with one violation. Martin developed a score 

determining the probability of a compound having 

bioavailability (F) > 10% in a rat model. If this score 

for a compound is 0.55, it means that the compound 

passes the rule-of-five (Lipinski rule) and has a 55% 

probability of giving F > 10% in the rat. While the 

score of 0.17 represents failing of the Lipinski rule 

and still has a 17% probability of giving F > 10% 29. 

In our study, all the designed compounds have a 

bioavailability score = 0.55, as they pass the Lipinski 

rule and thus have a 55% probability of F > 10%. The 

synthetic accessibility of the designed compounds 

was also determined. Here the score for synthetic 

accessibility is categorized in the range of 1 (very easy 

to synthesize) to 10 (very difficult to synthesize) 24. 

The synthetic accessibility scores for all 15 designed 

compounds range from 3.02 to 3.88. It suggests that 

our designed compounds can be synthesized further. 

 

4. Conclusion 
 

In the present work, 3D QSAR and molecular docking 

studies were performed in search of necessary  

structural attributes and potential binding interactions 

to improve the potency of the pyrimidine derivatives 

as EGFR-TKIs in non-small cell lung cancer. 

Considering derived structural information, some new 

pyrimidine-based tyrosine kinase inhibitors were 

designed, which showed good predictions using 

developed 3D QSAR models. The designed 

compounds showed H-bond interaction with MET 

793; newer interactions were also seen with residues 

like ASP 800 and SER 720. Dataset compounds 29, 

34, 26, 15, 35 and designed compound N7 showed 

higher docking scores with promising binding 

interactions than the reference ligand gefitinib, which 

could be an encouraging finding for further 

optimizations. Interestingly, the MMGBSA binding 

energy calculations revealed the stronger binding 

affinity of the designed compound N7 compared to 

other ligands. In silico ADME predictions of the 

designed compounds were also carried out to 

understand drug-likeness better. Finally, we 

summarize that our findings from the above studies 

will be helpful for the future development of novel 

pyrimidine derivatives as EGFR tyrosine kinase 

inhibitors which could overcome the developed drug 

resistances. 
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Structural identification of novel pyrimidine derivatives as epidermal growth factor 

receptor inhibitors using 3D QSAR, molecular docking and MMGBSA analysis: a 

rational approach in anticancer drug design 

 

 

 

Supplementary Figure 1. Superimposition of co-crystalized gefitinib (sky) and re-docked co-

crystalized gefitinib (purple) in the binding site of EGFRL858R/T790M protein (PDB ID: 4I22). 

 

 

 

 (A)                                                                                 (B) 

Supplementary Figure 2. Binding interactions in between EGFRL858R/T790M protein and newly 

designed compounds. (A) Compound N4; (B) Compound N1. 

 


