A unified strategy for the synthesis of amorfrutins A and B and evaluation of their cytotoxicity
DOI:
https://doi.org/10.13171/mjc10902011171546rcAbstract
3,5-Dimethoxy-benzaldehyde was used as a starting material to synthesize a central intermediate, 2-hydroxy-4-methoxy-6-phenethylbenzoic acid that was converted very quickly and with good yields into amorfrutins A and B. Furthermore, this compound was also used as a starting material to synthesize a piperazinyl-rhodamine B conjugate. The latter compound showed good cytotoxicity (EC50 = 2.3–5.1 mM) and promising selective cytotoxicity (S = 2.1–4.6) for human tumor cell lines as compared to non-malignant fibroblasts (NIH 3T3).
References
- D.J. Newman, Developing natural product drugs: Supply problems and how they have been overcome, Pharmacol. Therapeut., 2016, 162,
-9.
- D.J. Newman, G.M. Cragg, Natural Products as Sources of New Drugs from 1981 to 2014, J. Nat. Prod., 2016, 79, 629-661.
- D.J. Newman, G.M. Cragg, Natural Product Scaffolds of Value in Medicinal Chemistry, RSC Drug Discov., 2016, 50, 348-378.
- H. von Bingen, Komplette Werkausgabe, Abtei St. Hildegard, Eibingen, Germany, 2017.
- M. Treben, Health through God's pharmacy, Ennsthaler Verlag, Steyr, Austria, 2007.
- https://www.who.int/new-room/fact-sheets/detail/the-top-10-causes-of-death;last accessed 2020-11-17.
- D. Yach, D. Stuckler, K.D. Brownell, Epidemiologic and economic consequences of the global epidemics of obesity and diabetes, Nat. Med., 2006, 12, 62-66.
- S. Sauer, Amorfrutins: A Promising Class of Natural Products that Are Beneficial to Health, ChemBioChem., 2014, 15, 1231-1238.
- D. Raederstorff, Novel nutraceutical, and pharmaceutical compositions comprising methoxylated aromatic compounds for the treatment, co-treatment or prevention of inflammatory disorders, 2007, WO2007093387A2.
- J.L. Rios, F. Francini, G.R. Schinella, Natural Products for the Treatment of Type 2 Diabetes Mellitus, Planta Med., 2015, 81, 975-994.
- L.A. Mitscher, Y.H. Park, A. Al-Shamma, P.B. Hudson, T. Haas, Amorfrutin A and B, bibenzyl antimicrobial agents from Amorpha fruticosa, Phytochemistry, 1981, 20, 781-785.
- R. Muharini, A. Diaz, W. Ebrahim, A. Mandi, T. Kurtan, N. Rehberg, R. Kalscheuer, R. Hartmann, R.S. Orfali, W. Lin, Z. Liu, P. Proksch, Antibacterial and Cytotoxic Phenolic Metabolites from the Fruits of Amorpha fruticosa, J. Nat. Prod., 2017, 80, 169-180.
- C. Weidner, J.C. de Groot, A. Prasad, A. Freiwald, C. Quedenau, M. Kliem, A. Witzke, V. Kodelja, C.T. Han, S. Giegold, M. Baumann, B. Klebl, K. Siems, L. Muller-Kuhrt, A. Schurmann, R. Schuler, A.F.H. Pfeiffer, F.C. Schroeder, K. Bussow, S. Sauer, Amorfrutins are potent antidiabetic dietary natural products, P. Natl. Acad. Sci., 2012, 109, 7257-7262.
- L. Fuhr, M. Rousseau, A. Plauth, F.C. Schroeder, S. Sauer, Amorfrutins Are Natural PPAR gamma Agonists with Potent Anti-inflammatory Properties, J. Nat. Prod., 2015, 78, 1160-1164.
- C. Chen, Y. Wu, L.L. Du, Qualitative and quantitative analysis of amorfrutins, novel antidiabetic dietary natural products, by HPLC, Pharm. Biol., 2016, 54, 488-493.
- C. Weidner, M. Rousseau, R.J. Micikas, C. Fischer, A. Plauth, S.J. Wowro, K. Siems, G. Hetterling, M. Kliem, F.C. Schroeder, S. Sauer, Amorfrutin C Induces Apoptosis and Inhibits Proliferation in Colon Cancer Cells through Targeting Mitochondria, J. Nat. Prod., 2016, 79, 2-12.
- J.C. de Groot, C. Weidner, J. Krausze, K. Kawamoto, F.C. Schroeder, S. Sauer, K. Buessow, Structural Characterization of Amorfrutins Bound to the Peroxisome Proliferator-Activated Receptor γ, J. Med. Chem., 2013, 56, 1535-1543.
- C. Weidner, S.J. Wowro, A. Freiwald, K. Kawamoto, A. Witzke, M. Kliem, K. Siems, L. Mueller-Kuhrt, F.C. Schroeder, S. Sauer, Amorfrutin B is an efficient natural peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent glucose-lowering properties, Diabetologia, 2013, 56, 1802-1812.
- L. Wang, B. Waltenberger, E.M. Pferschy-Wenzig, M. Blunder, X. Liu, C. Malainer, T. Blazevic, S. Schwaiger, J.M. Rollinger, E.H. Heiss, D. Schuster, B. Kopp, R. Bauer, H. Stuppner, V.M. Dirsch, A.G. Atanasov, Natural product agonists of peroxisome proliferator-activated receptor-gamma (PPARγ): a review, Biochem. Pharmacol., 2014, 92, 73-89.
- S. Garcia-Vallve, L. Guasch, S. Tomas-Hernandez, J.M. del Bas, V. Ollendorff, L. Arola, G. Pujadas, M. Mulero, Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Ligand Choreography: Newcomers Take the Stage, J. Med. Chem., 2015, 58, 5381-5394.
- A. Lavecchia, C. Di Giovanni, Amorfrutins are efficient modulators of peroxisome proliferator-activated receptor-gamma (PPARγ) with potent antidiabetic and anticancer properties: a patent evaluation of WO2014177593 A1, Expert Opin. Ther. Pat., 2015, 25, 1341-1347.
- S. Yousefnia, S. Momenzadeh, F. Seyed Forootan, K. Ghaedi, M.H. Nasr Esfahani, The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity, Gene, 2018, 649, 14-22.
- D. Raederstorff, J. Schwager, K. Wertz, Composition comprising rosehip for treatment of the inflammatory disorder, 2008, WO2008006589A2.
- S. Liu, M. Su, S.J. Song, J. Hong, H.Y. Chung, J.H. Jung, An Anti-Inflammatory PPAR-γ Agonist from the Jellyfish-Derived Fungus Penicillium chrysogenum J08NF-4, J. Nat. Prod., 2018, 81, 356-363.
- P. Lefebvre, B. Staels, Naturally improving insulin resistance with amorfrutins, Proc. Natl. Acad. Sci., 2012, 109, 7136-7137.
- D. Raederstorff, J. Schwager, G. Schueler, Nutraceutical and pharmaceutical compositions and use thereof for the treatment, co-treatment or prevention of inflammatory disorders, 2012, WO2007093387A1.
- C. Chen, Y. Xue, Q.M. Li, Y. Wu, J. Liang, L.S. Qing, Neutral Loss Scan - Based Strategy for Integrated Identification of Amorfrutin Derivatives, New Peroxisome Proliferator-Activated Receptor Gamma Agonists, from Amorpha Fruticosa by UPLC-QqQ-MS/M.S. and UPLCQ-TOF-MS, J. Am. Soc. Mass Spectrom., 2018, 29, 685-693.
- S. Laclef, K. Anderson, A.J.P. White, A.G.M. Barrett, Total synthesis of amorfrutin A via a palladium-catalyzed migratory prenylation-aromatization sequence, Tetrahedron Lett., 2012, 53, 225-227.
- C. Weidner, J.C. de Groot, A. Prasad, A. Freiwald, C. Quedenau, M. Kliem, A. Witzke, V. Kodelja, C.T. Han, S. Giegold, M. Baumann, B. Klebl, K. Siems, L. Muller-Kuhrt, A. Schurmann, R. Schuler, A.F.H. Pfeiffer, F.C. Schroeder, K. Bussow, S. Sauer, Amorfrutins are potent antidiabetic dietary natural products, Proc. Natl. Acad. Sci., 2012, 109, 7257-7262.
- Y.Y. Song, H.G. He, Y. Li, Y. Deng, A facile total synthesis of amorfrutin A, Tetrahedron Lett., 2013, 54, 2658-2660.
- I.S. Aidhen, R. Mukkamala, C. Weidner, S. Sauer, A Common Building Block for the Syntheses of Amorfrutin and Cajaninstilbene Acid Libraries Toward Efficient Binding with Peroxisome Proliferator-Activated Receptors, Org. Lett., 2015, 17, 194-197.
- X.Y. Ji, J.H. Chen, G.H. Zheng, M.H. Huang, L. Zhang, H. Yi, J. Jin, J.-D. Jiang, Z.G. Peng, Z.R. Li, Design, and Synthesis of Cajanine Analogues against Hepatitis C Virus through Down-Regulating Host Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1, J. Med. Chem., 2016, 59, 10268-10284.
- T. Fujita, S. Kuwahara, Y. Ogura, Unified total synthesis of amorfrutins A and C via the Claisen rearrangement, Biosci. Biotechnol. Biochem., 2019, 83, 1635-1641.
- B. Weber, B. Brandes, D. Powroznik, R. Kluge, R. Csuk, An efficient and robust synthesis of amorfrutin A, Tetrahedron Lett., 2019, 60,
-1381.
- T. Fujita, S. Kuwahara, Y. Ogura, Synthesis of amorfrutins B and D from amorfrutin A ethyl ester, Tetrahedron Lett., 2020, 61, 151477.
- G.S. Grandhi, J. Selvakumar, S. Dana, M. Baidya, Directed C-H Bond Functionalization: A Unified Approach to Formal Syntheses of Amorfrutin A, Cajaninstilbene Acid, Hydrangenol, and Macrophyllol, J. Org. Chem., 2018, 83, 12327-12333.
- E.L. Ghisalberti, P.R. Jefferies, D. McAdam, Isoprenylated resorcinol derivatives from Glycyrrhiza acanthocarpa, Phytochemistry, 1981, 20, 1959-1961.
- M. Kozubek, I. Serbian, S. Hoenke, O. Kraft, R. Csuk, Synthesis and cytotoxic evaluation of hydroxycinnamic acid rhodamine B conjugates, Results Chem., 2020, 2, 100057.
- S. Sommerwerk, L. Heller, C. Kerzig, A.E. Kramell, R. Csuk, Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations, Eur. J. Med. Chem., 2017, 127, 1-9.
- M. Kahnt, J. Wiemann, L. Fischer, S. Sommerwerk, R. Csuk, Transformation of asiatic acid into a mitocanic, bimodal-acting rhodamine B conjugate of nanomolar cytotoxicity, Eur. J. Med. Chem., 2018, 159,
-148.
- J. Wiemann, L. Fischer, J. Kessler, D. Ströhl, R. Csuk, Ugi multicomponent-reaction: Syntheses of cytotoxic dehydroabietylamine derivatives, Bioorg Chem., 2018, 81, 567-576.
- R.K. Wolfram, L. Fischer, R. Kluge, D. Ströhl, A. Al-Harrasi, R. Csuk, Homopiperazine-rhodamine B adducts of triterpenoic acids are strong mitocans, Eur. J. Med. Chem., 2018, 155, 869-879.
- R.K. Wolfram, L. Heller, R. Csuk, Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis, Eur. J. Med. Chem., 2018, 152, 21-30.
- R. Csuk, H.P. Deigner, The potential of click reactions for the synthesis of bioactive triterpenes, Bioorg. Med. Chem. Lett., 2019, 29, 949-958.
- B. Brandes, S. Hoenke, L. Fischer, R. Csuk, Design, synthesis, and cytotoxicity of BODIPY FL labelled triterpenoids, Eur. J. Med. Chem., 2020, 185, 111858.
- S. Friedrich, I. Serbian, S. Hoenke, R.K. Wolfram, R. Csuk, Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides, Med. Chem. Res., 2020, 29, 926-933.
- B. Del Secco, G. Malachin, L. Milli, N. Zanna, E. Papini, A. Cornia, R. Tavano, C. Tomasini, Form matters: Stable helical foldamers preferentially target human monocytes and granulocytes, ChemMedChem, 2017, 12,
-345.
- A.N. Preston, J.D. Farr, B.K. O'Neill, K.K. Thompson, S.E. Tsirka, S.T. Laughlin, Visualizing the Brain's Astrocytes with Diverse Chemical Scaffolds, ACS Chem. Biol., 2018, 13, 1493-1498.
- I. Serbian, S. Hoenke, R. Csuk, Synthesis of some steroidal mitocans of nanomolar cytotoxicity acting by apoptosis, Eur. J. Med. Chem., 2020, 199, 112425.
- X.-J. Xu, T. Zeng, Z.X. Huang, X.F. Xu, J. Lin, W.M. Chen, Synthesis, and Biological Evaluation of Cajaninstilbene Acid and Amorfrutins A and B as Inhibitors of the Pseudomonas aeruginosa Quorum Sensing System, J. Nat. Prod., 2018, 81, 2621-2629.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).