Cover Image

A one-pot multi-component synthesis of novel 2((1H-Indole-3yl) (Phenyl) methyl) malononitrile derivative by utilizing recoverable and efficient TiO2 nanocatalyst

Artish Roy, Aayushi Chanderiya, Hemlata Dangi, Arunesh Kumar Mishra, Pratibha Mishra, Sushil Kumar Kashaw, Ratnesh Das

Abstract


In this research, we have described a facile and user-friendly protocol for the formation of 2((1H-Indole-3yl)(Phenyl)methyl)malononitrile derivatives using a recoverable and efficient TiO2 nanocatalyst. This protocol is simple and incredibly efficient for the synthesis of novel 2((1H-Indole-3yl)(Phenyl)methyl)malononitrile derivatives. Nanoscale TiO2 is used as the catalyst. Since TiO2 has more surface area easily binds with the active site of a reactive molecule and initiates the reaction. At last, TiO2 also recovered as it acts as a catalyst. This multi-component reaction involves indole, malononitrile, and active aldehyde derivatives in the presence of ethanol as solvent and TiO2 as a nanocatalyst. The synthetic methodology employed for multi-component reactions produces substituted 2((1H-Indole-3yl)(Phenyl) methyl) malononitrile derivatives with an environmentally friendly protocol under modest reaction conditions. This study shows that the recoverable and environmentally friendly TiO2 nanocatalyst is an effective material for the synthesis of 2((1H-Indole-3yl) (Phenyl) methyl) malononitrile derivatives with high yields, rapid reaction at room temperature, and effortless product isolation.


Full Text:

PDF

References


- P. Phukan, S. Agarwal, K. Deori, D. Sarma, Zinc Oxide Nanoparticles Catalysed One ‑Pot Three-Component Reaction : A Facile Synthesis of 4-Aryl-NH-1, 2, 3-Triazoles, Catal. Letters, 2020, 150 (8), 2208–2219.

- M.M. Khodaei, A. Alizadeh, M. Haghipour, Supported 4-Carboxybenzyl Sulfamic Acid on Magnetic Nanoparticles as a Recoverable and Recyclable Catalyst for Synthesis of 3,4,5-Trisubstituted Furan-2(5H)-one derivatives, J. Organomet. Chem., 2018, 870, 58–67.

- A. Chanderiya, A. Roy, R. Das, Synthesis of 3,4-Dihydropyrano[c]Chromene Derivatives Using Porous Copper Oxide as Nanocatalyst and Their Electrochemical Study, Mediterr. J. Chem., 2022, 12 (2), 201–209.

- W.H. Zhang, M. N. Chen, Y. Hao, X. Jiang, X.L. Zhou, Z.H. Zhang, Choline Chloride and Lactic Acid: A Natural Deep Eutectic Solvent for One-Pot Rapid Construction of Spiro[Indoline-3,4′-Pyrazolo[3,4-b]Pyridines], J. Mol. Liq., 2019, 278, 124–129.

- N. M. Evdokimov, A.S. Kireev, A.A. Yakovenko, M.Y. Antipin, I.V. Magedov, A. Kornienko, One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multi-component Reaction of Malononitrile with Aldehydes and Thiols, J. Org. Chem., 2007, 72 (9), 3443–3453.

- P. Singh, P. Yadav, A. Mishra, S.K. Awasthi, Green and Mechanochemical One-Pot Multi-component Synthesis of Bioactive 2-Amino-4 H-Benzo[ b]Pyrans via Highly Efficient Amine-Functionalized SiO2@Fe3O4 Nanoparticles, ACS Omega, 2020, 5 (8), 4223–4232.

- A.V. Nakhate, G.D. Yadav, Hydrothermal Synthesis of CuFe2O4 Magnetic Nanoparticles as Active and Robust Catalyst for N-Arylation of Indole and Imidazole with Aryl Halid, ChemistrySelect, 2017, 2 (8), 2395–2405.

- G. Mohammadi Ziarani, R. Moradi, T. Ahmadi, N. Lashgari, Recent Advances in the Application of Indoles in Multi-component Reactions, RSC Adv., 2018, 8 (22), 12069–12103.

- W. Yan, S.S. Zhao, Y.H. Ye, Y.Y.; Zhang, Y. Zhang, J.Y. Xu, S.M. Yin, R.X. Tan, Generation of Indoles with Agrochemical Significance through Biotransformation by Chaetomium Globosum, J. Nat. Prod., 2019,

(8), 2132–2137.

- M.M. Heravi, Z. Amiri, K. Kafshdarzadeh, V. Zadsirjan, Synthesis of Indole Derivatives as Prevalent Moieties Present in Selected Alkaloids, RSC Adv., 2021, 11 (53), 33540–33612.

- T. Shaikh, A. Sharma, H. Kaur, Ultrasonication-Assisted Synthesis of 3-Substituted Indoles in Water Using Polymer Grafted ZnO Nanoparticles as Eco-Friendly Catalyst, ChemistrySelect, 2019, 4 (1), 245–249.

- T. Lee; F. Rostami, H3PW12O40/SBA-15 for the Solventless Synthesis of 3-Substituted Indoles, Catalysts, 2019, 9 (5), 409.

- M. Zhang, Y.h. Liu, Z.R. Shang, H.C. Hu, H.Z. Zhang, Supported Molybdenum on Graphene Oxide/Fe3O4: An Efficient, Magnetically Separable Catalyst for One-Pot Construction of Spiro-Oxindole Dihydropyridines in Deep Eutectic Solvent under Microwave Irradiation, Catal. Commun., 2017, 88, 39–44.

- N. M. Ghohe, R. Tayebee, M.M. Amini, A. Osatiashtiani, A.M. Isaacs, F.A. Lee, H5PW10V2O40@VOx/SBA-15-NH2 Catalyst for the Solventless Synthesis of 3-Substituted Indoles, Tetrahedron, 2017, 73 (40), 5862–5871.

- I. Choi, H. Chung, J.W. Park, Y.K. Chung, Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl) Acetonitriles in the Presence of Co–Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions, Org. Lett., 2016, 18 (21), 5508–5511.

- H. Ramshini, B. Mannini, K. Khodayari, A. Ebrahim-Habibi, A.S. Moghaddasi, R. Tayebee, F. Chiti, Bis(Indolyl)Phenylmethane Derivatives Are Effective Small Molecules for Inhibition of Amyloid Fibril Formation by Hen Lysozyme, Eur. J. Med. Chem., 2016, 124, 361–371.

- M. Esmaeilpour, J. Javidi, F. Dehghani, F.A. Nowroozi Dodeji, Green One-Pot Three-Component Synthesis of Tetrahydrobenzo[b]Pyran and 3,4-Dihydropyrano[c]Chromene Derivatives Using a Fe3O4@SiO2-Imid-PMAn Magnetic Nanocatalyst under Ultrasonic Irradiation or Reflux Conditions, RSC Adv., 2015, 5 (34), 26625-26633.

-H.L. Qin, J. Liu, W.Y. Fang, L. Ravindar, K.P. Rakesh, Indole-Based Derivatives as Potential Antibacterial Activity against Methicillin-Resistance Staphylococcus Aureus (MRSA), Eur. J. Med. Chem., 2020, 194, 112245.

-M.A. Ghasemzadeh, R. Bakhshali-Dehkordi, Novel and Green Preparation of Fe3O4@TiO2-Immobilized-ILs Based on DABCO for Highly Efficient Synthesis of Primido[4,5-d]Pyrimidines, ChemistrySelect, 2020, 5 (29), 9097–9104.

-A. Roy, A.K. Bahe, A.A. Chanderiya, H. Dangi, P. Mishra, A.K. Mishra, R. Das, Synthesis of Nitrogen-and Oxygen-Containing Heterocyclic Compounds Using Nanocatalyst: A Review, J. Turkish Chem. Soc. Sect. A Chem., 2021, 8 (3), 851–862.

-M. Shen, F. Zhang, T. Hong, J. Xie, Y. Wang, S. Nie, M. Xie, Comparative Study of the Effects of Antioxidants on Furan Formation during Thermal Processing in Model Systems, Lwt, 2017, 75, 286–292.

- A.F. Kassem, I.F. Nassar, M.T. Abdel-Aal, M.H. Awad, W.A. El-Sayed, Synthesis and Anticancer Activity of New ((Furan-2-Yl)-1,3,4-Thiadiazolyl)-1,3,4-Oxadiazole Acyclic Sugar Derivatives, Chem. Pharm. Bull., 2019, 67 (8), 888–895.

- S. Malladi, R.V. Nadh, K.S. Babu, P.S. Babu, Synthesis and Antibacterial Activity Studies of 2,4-Di Substituted Furan Derivatives, Beni-Suef Univ. J. Basic Appl. Sci., 2017, 6 (4), 345–353.

- T.Srichumpong, S. Angkulpipat, S. Prasertwong, S. Thongpun, N.Teanchai, C. Veronesi, P. Suputtamongkol, K. Leonelli, C. Heness,

D. Chaysuwan, Effect of the Crystallisation Time and Metal Oxide Pigments on Translucency and the Mechanical and Physical Properties of Mica Glass-Ceramics, J. Non. Cryst. Solids, 2020, 528 (October 2019), 119730.

- V. Jeyalakshmi, R. Mahalakshmi, K. Ramesh, P.V.C. Rao, V.N. Choudary, K. Thirunavukkarasu, K.R. Krishnamurthy, B. Viswanathan, Metal Oxides as Photo Catalysts: Modified Sodium Tantalate as Catalyst for Photo Reduction of Carbon Dioxide, Mol. Catal., 2018, 451, 105–113.

- S. Fang, D. Bresser, S. Passerini, Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries, Adv. Energy Mater., 2020, 10 (1).

- R.K. Upadhyay, N. Soin, S.S. Roy, Role of Graphene/Metal Oxide Composites as Photocatalysts, Adsorbents and Disinfectants in Water Treatment: A Review, RSC Adv., 2014, 4 (8), 3823–3851.

- J.Tang, F. Redl, Y. Zhu, T. Siegrist, L.E. Brus, L.M. Steigerwald, An Organometallic Synthesis of TiO2 Nanoparticles, Nano Lett., 2005, 5 (3),

–548.

- A. Hassanpour, R.H. Khanmiri, J. Abolhasani, ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for One-Pot, Three-Component Synthesis of 3,4-Dihydropyrimidin-2(1 H)-(Thio)one derivatives in Water, Synth. Commun., 2015, 45 (6), 727–733.

- M. Shirzaei, E. Mollashahi, M. Taher Maghsoodlou, M. Lashkari, Novel Synthesis of Silica-Coated Magnetic Nanoparticles Based on Acidic Ionic Liquid, as a Highly Efficient Catalyst for Three Component System Leads to Furans Derivatives, J. Saudi Chem. Soc., 2020, 24 (2), 216–222.

- R.T.M. Gholamhosseini-nazari, Novel Ferrocene-Based Ionic Liquid Supported on Silica Nanoparticles as Efficient Catalyst for Synthesis of Naphthopyran Derivatives, Res. Chem. Intermed., 2017, 43 (12), 7105–7118.

- R. Tayebee, M.M. Amini, N. Abdollahi, A. Aliakbari, S. Rabiei, H. Ramshini, Magnetic Inorganic-Organic Hybrid Nanomaterial for the Catalytic Preparation of Bis(Indolyl)Arylmethanes under Solvent-Free Conditions: Preparation and Characterization of H5PW10V2O40/Pyridino-Fe3O4 Nanoparticles, Appl. Catal. A Gen., 2013, 468, 75–87.

- M. Boominathan, N. Pugazhenthiran, M. Nagaraj, S. Muthusubramanian, S; Murugesan, N. Bhuvanesh, Nanoporous Titania-Supported Gold Nanoparticle-Catalyzed Green Synthesis of 1,2,3-Triazoles in Aqueous Medium, ACS Sustain. Chem. Eng., 2013, 1 (11), 1405–1411.

- X. Jiang, Y. Liu, H. Hao, Y. Xu, J. Huang, D. Sun, Q. Li, Rape Pollen-Templated Synthesis of C,N Self-Doped Hierarchical TiO2 for Selective Hydrogenation of 1,3-Butadiene, ACS Sustain. Chem. Eng., 2018, 6 (1), 882–888.

- Z. Li, R. Wnetrzak, W. Kwapinski, J.J. Leahy, Synthesis and Characterization of Sulfated TiO2 Nanorods and ZrO2/TiO2 Nanocomposites for the Esterification of Biobased Organic Acid. ACS Appl. Mater. Interfaces 2012, 4 (9), 4499-4505.

- Y. Yamazaki, M. Fujitsuka, S. Yamazaki, Effect of Organic Additives during Hydrothermal Syntheses of Rutile TiO2 Nanorods for Photocatalytic Applications, ACS Appl. Nano Mater., 2019, 2 (9), 5890–5899.

- A. Elsanousi, Y. Riadi, O. Ouerghi, M.H. Geesi, Synthesis, Characterization of TiO2-Based Nanostructure as Efficient Catalyst for the Synthesis of New Heterocycles Benzothiazole-Linked Pyrrolidin-2-One: Catalytic Performances Are Particle’s Size Dependent, Polycycl. Aromat. Compd., 2022, 0 (0), 1–14.

- M.H. Geesi, O. Ouerghi, O. Dehbi, Y. Riadi, Metal-Doped TiO2nanocatalysts in an MX2/Urea Mixture for the Synthesis of Benzothiazoles Bearing Substituted Pyrrolidin-2-Ones: Enhanced Catalytic Performance and Antibacterial Activity, J. Environ. Chem. Eng., 2021, 9 (4), 105344.

- S. Shaikh, I. Yellapurkar, M.M.V. Ramana, Ultrasound Assisted One-Pot Synthesis of Novel Antipyrine Based α-Aminophosphonates Using TiO2/Carbon Nanotubes Nanocomposite as a Heterogeneous Catalyst, React. Kinet. Mech. Catal., 2021, 134 (2), 917–936.

- S.S. Al-Taweel, H.R. Saud, New Route for Synthesis of Pure Anatase TiO2 Nanoparticles via Utrasound-Assisted Sol-Gel Method, J. Chem. Pharm. Res., 2016, 8 (2), 620–626.

- M. Chandra Sekhar, B. Purusottam Reddy, S.V. Prabhakar Vattikuti, G. Shanmugam, C.H. Ahn, S.H. Park, Structural, Magnetic, and Catalytic Properties of Mn-doped Titania Nanoparticles Synthesized by aSol–Gel Process, J. Clust. Sci., 2018, 29 (6), 1255–1267.

- B. Manikandan, K. Murali, R. John, R. Optical, Morphological and Microstructural Investigation of TiO2 nanoparticles for Photocatalytic Application, Iran. J. Catal., 2021, 11 (1), 1–11.




DOI: http://dx.doi.org/10.13171/mjc02301231672das

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mediterranean Journal of Chemistry