Cover Image

Diagnosis of agrochemical inputs in sugar beet (Beta vulgaris L.) fields in the irrigated perimeter of Tadla, Morocco

Majda Ouhajjou, Bassou Bouazzama, Mohamed Edahbi, Hanaa Hachimi

Abstract


In Morocco, the irrigated perimeter of Tadla (IPT) is one of the regions most exposed to agricultural contaminants due to agricultural intensification. That study aims to establish a diagnosis of the employment of agrochemicals in the sugar beet crop (Beta vulgaris L.) at IPT. Accordingly, we examined agrochemical use data collected in consultation with 148 beet growers for a single agricultural campaign (2020-2021). Data proceeding results indicate five classes of agrochemicals in use in sugar beet fields: fertilizers (95.37%), pesticides (3.51%), adjuvants (0.1%), pH regulators (0.02%), and plant growth promoters (1%). Pesticides are applied in 97.29% of fields; they consist of insecticides (76.35%), herbicides (21.22%), and fungicides (2.43%). Chlorpyrifos, metamitrone, and epoxiconazole are the most used pesticides in the surveyed fields. Underuse and excessive use of pesticides were highlighted as two main modes indicatives of pesticide use trends in the surveyed fields. Excessive use of pesticides can lead to groundwater contamination. For this reason, managing weeds, pests, and pathogens in sugar beet fields needs to envisage other control alternatives to minimize the environmental impact of pesticides, particularly in the current context of water scarcity experienced by the irrigated perimeter of Tadla.

Full Text:

PDF

References


- Ormvat, Monographie du périmètre irrigué du Tadla, ORMVAT. 2021. https://ormvatadla.ma/monographie/ (accessed 01 Aout 2021).

- J. Bocianowski, M. Jakubowska, J. Kowalska, The interaction of different abiotic conditions on the value of the component traits of the technological yield of sugar beet, Euphytica, 2022, 218, 110.

- T. F. J. Fitters, J. S. Bussell, S. J. Mooney, D. L. Sparkes, Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes, Environ Exp Bot, 2017, 144, 61–67.

- M. Zahir, S. Ahmad, A. Wakeel, M. Mubarak, Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions, J Integr Agric, 2015, 15 doi:10.1016/S2095-3119(15)61252-7.

- K. Trimpler, N. Stockfisch, B. Märländer, Efficiency in sugar beet cultivation related to field history, Eur J Agron, 2017, 91, 1–9.

- J. Bocianowski, M. Jakubowska, D. Zawada, R. Dobosz, The Effect of Acaricide Control of the Two-Spotted Spider Mite Tetranychus urticae Koch on the Cultivation of Sugar Beet (Beta vulgaris L.) and on the Size and Quality of the Yield, Appl Sci-BASEL, 2022, 12, 12139.

- N. Soltani, J. A. Dille, D. E. Robinson, C. L. Sprague, D. W. Morishita, N. C. Lawrence, A. R. Kniss, P. Jha, J. Felix, R. E. Nurse, P. H. Sikkema, Potential yield loss in sugar beet due to weed interference in the United States and Canada, Weed Technol, 2018, 32, 749–753.

- E.-C. Oerke, H.-W. Dehne, Safeguarding production—losses in major crops and the role of crop protection, Crop Prot, 2004, 23, 275–285.

- L. I. Rangel, R. E. Spanner, M. K. Ebert, S. J. Pethybridge, E. H. Stukenbrock, R. de Jonge, G. A. Secor, M. D. Bolton, Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet, Mol Plant Pathol, 2020, 21, 1020–1041.

- M. Jakubowska, J. Bocianowski, K. Nowosad, J. Kowalska, Decision Support System to Improve the Effectiveness of Chemical Control Against Cutworms in Sugar Beet, Sugar Tech, 2020, 22, 911–922.

- Cosumar | Rapports Annuels, Cosumar. https://www.cosumar.co.ma/publications/ (accessed 08 Aout 2021).

- M. S. Sadak, Physiological Role of Arbuscular Mycorrhizae and Vitamin B1 on Productivity and Physio-Biochemical Traits of White Lupine (Lupinus termis L.) Under Salt Stress, Gesunde Pflanz, 2023, 75, 1885–1896.

- M. S. Sadak, M. G. Dawood, Biofertilizer Role in Alleviating the Deleterious Effects of Salinity on Wheat Growth and Productivity, Gesunde Pflanz, 2023, 75, 1207–1219.

- A. Hammani, Marcel Kuper, A. Debbarh, S. Bouarfa, M. Badraoui, et al.. Evolution de l’exploitation des eaux souterraines dans le périmètre irrigué du Tadla. Séminaire sur la modernisation de l’agriculture irriguée, 2004, Rabat, Maroc. 8 p. ffcirad-00189415f

- A. Boundi, Z. A. Yacine, Characterization of climate impacts on a semi-arid agricultural perimeter in Morocco, E3S Web Conf, 2022, 337, 02001.

- N. E. Hammoumi, M. Sinan, B. Lekhlif, L. E. Mahjoub, Évaluation de la qualité des eaux souterraines pour l’utilisation dans l’eau potable et l’agriculture : plaine de Tadla, Maroc, Afr Sci Rev Int Sci Technol, 2012, 8https://www.ajol.info/index.php/afsci/article/view/87635 (accessed 12 Jan2024).

- F. Z. Hafiane, L. Tahri, N. Nouayti, M. El Jarmouni, A. Karim, A. Idrissi, F. Mohamed, ASSESSMENT OF SPATIAL AND SEASONAL NITRATE VARIATION OF GROUNDWATER IN THE IRRIGATED PERIMETER (TADLA PLAIN-MOROCCO), 2020, 66, 203–214.

- M. Y. Jamali, M. Namous, A. Tallou, K. Atif, S. Amir, Estimation of Groundwater Vulnerability to Pollution Based on DRASTIC and SI Methods: A Case Study of the Irrigated Area of Tadla Plain, Oum Errabia Basin, Morocco, 2020, 1–5.

- Index Phytosanitaire Maroc 2024 – AgriMaroc.ma, https://www.agrimaroc.ma/index-phytosanitaire-maroc/ (accessed 30 Novembre 2021).

- Pesticide Properties Database, https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm (accessed 12 Aout 2021).

- Ormvat, Monographie de la commune rurale de Sidi Jaber, ORMVAT. , 2018. (accessed 01 Aout 2021).

- PubChem, PubChem, https://pubchem.ncbi.nlm.nih.gov/ (accessed 4 Jan2024).

- T. Bhadra, S. Paul, Weed management in sugar beet: A review, Fundam Appl Agric, 2020, 5, 1.

- B. Hanse, J. H. M. Schneider, A. J. Termorshuizen, M. Varrelmann, Pests and diseases contribute to sugar beet yield difference between top and averagely managed farms, Crop Prot, 2011, 30, 671–678.

- F. Wiesler, M. Bauer, M. Kamh, T. Engels, S. Reusch, The crop as indicator for sidedress nitrogen demand in sugar beet production — limitations and perspectives, J Plant Nutr Soil Sci, 2002, 165, 93–99.

- J. A. Lamb, J. T. Moraghan, Comparison of Foliar and Preplant Applied Nitrogen Fertilizer for Sugar Beet, Agron J, 1993, 85, 290–295.

- L. Barbanti, A. Monti, G. Venturi, Nitrogen dynamics and fertilizer use efficiency in leaves of different ages of sugar beet (Beta vulgaris) at variable water regimes, Ann Appl Biol, 2007, 150, 197–205.

- G. Jégo, M. Martínez, I. Antigüedad, M. Launay, J. M. Sanchez-Pérez, E. Justes, Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil–crop model, Sci Total Environ, 2008, 394, 207–221.

- I. E. Ghazi, J. Egah, B. Imane, A. Menouni, M. Amane, M.-P. Kestemont, S. E. Jaafari, Utilisation et Gestion des Pesticides dans les Zones Agricoles Urbaines, Périurbaines et Rurales de la Préfecture de Meknès, Maroc, Eur Sci J ESJ, 2021, 17, 94–94.

- F. Z. Hafiane, N. Nouayti, L. Tahri, M. El Jarmouni, D. Salahddine, F. Mohamed, Inventory: The pesticides application and its risk assessment in the irrigated perimeter of Tadla-Morocco, Limnol Rev, 2021, 21, 15–27.

- W. Heijbroek, A. W. M. Huijbregts, Fungicides and insecticides applied to pelleted sugar-beet seeds — III. Control of insects in soil, Crop Prot, 1995, 14, 367–373.

- O. Fishkis, H.-J. Koch, Effect of mechanical weeding on soil erosion and earthworm abundance in sugar beet (Beta vulgaris L.), Soil Tillage Res, 2023, 225, 105548.

- H.-J. Koch, K. Trimpler, A. Jacobs, N. Stockfisch, Crop Rotational Effects on Yield Formation in Current Sugar Beet Production – Results From a Farm Survey and Field Trials, Front Plant Sci, 2018, 9https://www.frontiersin.org/articles/10.3389/fpls.2018.00231 (accessed 15 Jan2024).

- Z. El Housni, S. Ezrari, A. Tahiri, A. Ouijja, R. Lahlali, First report of benzimidazole, DMI and QoI-insensitive Cercospora beticola in sugar beet in Morocco, New Dis Rep, 2018, 38, 17–17.

- C. M. Hoffmann, C. Kenter, Yield Potential of Sugar Beet – Have We Hit the Ceiling?, Front Plant Sci, 2018, 9https://www.frontiersin.org/articles/10.3389/fpls.2018.00289 (accessed

Jan2024).

- N. Colbach, S. Cordeau, Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures, Eur J Agron, 2018, 94, 67–78.

- E. Elahi, C. Weijun, H. Zhang, M. Nazeer, Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence, Land Use Policy, 2019, 83, 461–474.

- S. Dwivedi, S. Mishra, R. D. Tripathi, Ganga water pollution: A potential health threat to inhabitants of Ganga basin, Environ Int, 2018, 117, 327–338.

- N. F. Poole, M. E. Arnaudin, The role of fungicides for effective disease management in cereal crops, Can J Plant Pathol, 2014, 36, 1–11.

- J. P. Zubrod, M. Bundschuh, G. Arts, C. A. Brühl, G. Imfeld, A. Knäbel, S. Payraudeau, J. J. Rasmussen, J. Rohr, A. Scharmüller, K. Smalling, S. Stehle, R. Schulz, R. B. Schäfer, Fungicides: An Overlooked Pesticide Class?, Environ Sci Technol, 2019, 53, 3347–3365.

- D. Roman, D. Voiculescu, M. Filip, V. Ostafe, A. Isvoran, Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review, Agriculture, 2021, 11, 893.

- S. Samanta, Metal and pesticide pollution scenario in Ganga River system, Aquat Ecosyst Health Manag, 2013, 16, 454–464.

- B. S. Anderson, B. M. Phillips, J. P. Voorhees, X. Deng, J. Geraci, K. Worcester, R. S. Tjeerdema, Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions, Integr Environ Assess Manag, 2018, 14, 270–281.




DOI: http://dx.doi.org/10.13171/mjc02401171756ouhajjou

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mediterranean Journal of Chemistry