Cover Image

The Rubberized Mechanical Features: Hardness, Modulus, Tensile Strength, Elongation at Break and Aging for Manufacturing Automotive Tires-An Overview

Md.Kudrat-E- Zahan, Md. Ekhlass Uddin, Md. Faruk Hossen, Md. Ali Asraf, Md Rausan Zamir

Abstract


Both rubber physics and chemistry are utilized for the manufacturing of spacecraft treads, tires, vehicle mats, conveyor belts, etc., in industries related to the automobile. This versatile rubber technology is devoted to vast and excellent mechanical features like hardness, modulus, tensile strength, elongation at break, and thermal aging. The science and practice of rubber compounding during the processing of tires provided rheological, mechanical properties, and stress-strain properties with aging are discussed in this technical review. Differential Scanning Calorimetry (DSC) reveals intricate phase transitions of microstructural changes. Thermogravimetric Analysis (TGA) offers information on the thermal stability of chemical compositions and the glass transition point, establishing operational flexibility for rubber characteristics in this investigation. However, these combined resources will thoroughly grasp the material's features, facilitating improved tire product design and quality assurance.


Full Text:

PDF

References


T. R. Vijayaram, A technical review on rubber, International Journal on Design and Manufacturing Technologies, 2009, 3, 25-37.

J. Alvarez, M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, M. Olazar, Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tires, Waste Management, 2019, 85, 385-395, DOI: https://doi.org/10.1016/j.wasman.2019.01.003.

N. Antoniou, A. Zabaniotou, Features of an efficient and environmentally attractive used tires pyrolysis with energy and material recovery, Renewable and Sustainable Energy Reviews, 2013, 20, 539-558, DOI: http://dx.doi.org/10.1016/j.rser.2012.12.005.

D. D. Arhin, S. A. Mensah, A. Yaya, B. A. Tuffour, Application of discarded rubber car tires as synthetic coarse aggregates in light weight pavement concretes, American Journal of Materials Science, 2015, 5, 75-83, DOI: 10.5923/j.materials.20150504.01.

A. H. Ali, Influence of crumb rubber modifier on performance characteristics of stone mastic asphalt, Master thesis, Faculty of engineering, University of Malaya, 2013.

S. Bandyopadhyay, S. Dasgupta, N. Mandal, S. L. Agrawal, S. K. Mandot, R. Mukhopadhyay, A. S. Deuri and S. C. Ameta, Use of recycled tire material in natural rubber based tire tread cap compound: part i (with ground crumb rubber), Progress in Rubber, Plastics and Recycling Technology, 2005, 21, 299-317.

S. Bandyopadhyay, S. L. Agrawal, R. Ameta, S. Dasgupta, R. Mukhopadhyay, A. S. Deuri and S. C. Ameta, Recycling of waste RFL (Resorcinol-Formaldehyde Latex) dip solid in natural rubber-based ply skim compound, Progress in Rubber, Plastics and Recycling Technology, 2007, 23,181-193.

J. M. Bouvier and M. Gelus, Pyrolysis of rubber wastes in heavy oils and use of the products, Resources and conservation, 1986, 12, 77-93.

P. Sajith , M. T. Ummer , N. Mandal , S. K. Mandot , S. L. Agrawal , S. Bandyopadhyay, R. Mukhopadhyay , B. D. Cruz , A. S. Deuri & A. P. Kuriakose, Synthesis of cobalt complexes and their evaluation as an adhesion promoter in a rubber-steel wire system, Journal of Adhesion Science and Technology, 2005, 19, 1475-1491, DOI:

1163/156856105774805868.

C. Sangiorgi, P. Tataranni, A. Simone, V. Vignali, C. Lantieri, G. Dondi, Stone mastic asphalt (SMA) with crumb rubber according to a new dry-hybrid technology: A laboratory and trial field evaluation, Construction and Building Materials, 2018, 182, 200-209, DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.128.

A. A. Abdulnabi, Effects of particle size and weight percentage of waste rubber crumbs on the performance of compounded tires, Thesis: Doctor of Philosophy, School of Graduate Studies, University Putra Malaysia, 2018.

Mullins, Effect of stretching on the properties of rubber, Journal of Rubber Research, 1947, 16, 275-289.

C. Radheshkumar and J. Karger-Kocsis, Thermoplastic dynamic vulcanisates containing LDPE, rubber, and thermochemically reclaimed ground tire rubber, Plastics, Rubber and Composites, 2002, 31, 99-105, DOI: http://dx.doi.org/10.1179/146580102225003074.

A. K. C. Aziz, T. Z. Zaeimoedin, M. M. Kamal, Effect of vulcanization additive on cure characteristics and physical properties of silica filled epoxidised natural rubber truck tire tread compound, Advanced Materials Research, 2015, 1107, 113-118, DOI: 10.4028/www.scientific.net/AMR.1107.113.

M. Sienkiewicz, H. Janik, K. B. Labuda, J. K. Lipka, Environmentally friendly polymer-rubber composites obtained from waste tires: A review, Journal of Cleaner Production, 2017, DOI: 10.1016/j.jclepro.2017.01.121.

J. R. Learn, The effect of heat aging upon silicone rubber compounds, 1949, Honors theses, DOI: https://digitalworks.union.edu/theses/2231.

S. Wang, Y. Gao, K. Yan, L. You, Y. Jia, X. Dai, M. Chen, A. Diab, Effect of long-term aging on waste tire rubber and amorphous poly alpha

olefin compound modified asphalt binder and its mixtures, Construction and Building Materials, 2020, DOI: https://doi.org/10.1016/j.conbuildmat. 2020.121667.

C. J. Wellappili, K. Silva, M. Dharmatilake and I. Denawaka, Effect of Chemically Treated Buffing Dust on Technological Properties of Tire Tread Compounds, Progress in Rubber, Plastics and Recycling Technology, 2007, 23.

X. Wu, S. Wang, R. Dong, Lightly pyrolyzed tire rubber used as potential asphalt alternative, Construction and Building Materials, 2016, 112, 623-628, DOI: http://dx.doi.org/10.1016/j.conbuildmat. 2016.02.208

J. G. Sommer, Engineered Rubber Products, 2009, pp. 14-24.

A. Choudhury, A. K. Bhowmick, M. Soddemann, Effect of organo-modified clay on accelerated aging resistance of hydrogenated nitrile rubber nanocomposites and their life time prediction, Polymer Degradation and Stability, 2010, 95, 2555-2562, DOI: 10.1016/j.polymdegradstab.2010.07.032.

S. G. Kaang, C. K. Hong, D. S. Jung, C. S. Ryu, D. H. Lee, Preparation of novel fillers, named networked silicas, and their effects of reinforcement on rubber compounds, Polym Inter, 2008, 57, 1101-1109.

M. Baldwin, D. R. Bauer, K. R. Ellwood, Accelerated aging of tires, part II, Rubb Chem Technol, 2005, 78, 336-354.

A. Ahagon, M. Kida, H. Kaidou, Aging of tire parts during service. I. Types of aging in heavy-duty tires, Rubb Chem Technol, 1990, 63, 683-697.

J. H. Jung, A study on life time prediction and aging property of rubber products for automobile, M.S. thesis, Gyeongsang national Univ., 2005.

H. Wang, Z. You, B.P. Mills, Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber, Constr. Build. Mater., 2012, 26, 583-590.

A. M. Fernández, C. Barriocana,, R. Alvarez, Pyrolysis of a waste from the grinding of scrap tires, J. Hazard. Mater., 2012, 203, 236-243.

B. Acevedo, A. M. Fernández, C. Barriocanal, Identification of polymers in waste tire reinforcing fibre by thermal analysis and pyrolysis, J. Anal. Appl. Pyrol., 2015, 111, 224-232.

ASTM D412-16, Standard test methods for vulcanized rubber and thermoplastic elastomers-tension. ASTM International, West Conshohocken, PA, 2016.

ASTM D2084-11, Standard test method for rubber property-vulcanization using oscillating disk cure meter, ASTM International, West Conshohocken, PA, 2016.

ASTM D2240-15, Standard test method for rubber property-durometer hardness, ASTM International, West Conshohocken, PA, 2015.

T. Susanto, R. Affandy, G. Katon, Rahmaniar, Thermal aging properties of natural rubber-styrene butadiene rubber composites filled with modified starch from Dioscorea Hispida Denst extract prepared by latex compounding method, AIP Conference Proceeding, 2018, DOI: https://doi.org/10.1063/1.5082421.

M. Muller, P. Valasek, A. Rudawska and R. Choteborsky, Effect of active rubber powder on structural two-component epoxy resin and its mechanical properties, Journal of Adhesion Science and Technology, 2018, DOI: 10.1080/01694243.2018.1428040.

M. M. P. Dan, L. A. Yu, Design and analysis a new materials of gasket pipping using waste rubber tires and coconut coir fibre, Journal of Advanced Manufacturing Technology, 2012, 6, 11-27.

M. Muller, P. Novak, Researches of liquid contaminants influence on change of hardness of agricultural tire tread, Research in Agricultural Engineering, 2015, 61, 14-20, DOI: 10.17221/66/2013-RAE.

S. C. Debnath, A. Das, D. Basu and G. H. Dresden, Naturally occurring amino acids: a suitable substitute of n-n/-di-phenyl guanidine (dpg) in silica tire formulation?, Raw Materials and Applications, 2013, 25-31.

H. K. Lee, D. S. Kim, J. S. Won, D. Y. Jin, H. J. Lee, and S. G. Lee, Effects of thermal and humidity aging on the interfacial adhesion of polyketone fiber reinforced natural rubber composites, Advances in Materials Science and Engineering, 2016, DOI: http://dx.doi.org/10.1155/2016/4159072.

K. R. S. Wright and P. S. Els, The effects of age on the stiffness properties of a suv tire, Proceedings of the 19th International & 14th European-African Regional Conference of the ISTVS, Budapest, 2017, 25-27.

K. Ahmed, S. S. Nizami, N. Z. Raza and K. Mahmood, Mechanical, swelling, and thermal aging properties of marble sludge-natural rubber composites, International Journal of Industrial Chemistry, 2012, 3, DOI: 10.1186/2228-5547-3-21.

R. He, S. Wu, X. Wang, Z. Wang, and H. Chen, Temperature sensitivity characteristics of sbs/crp-modified bitumen after different aging processes, Materials, 2018, 11, DOI: 10.3390/ma11112136.

S. Bandyopadhyay, N. Mandal, S. L. Agrawal, S. Dasgupta, R. Mukhopadhyay, A. S. Deuri and S. C. Ameta, Effect of regenerated carbon-black on a bias tire tread cap compound, Progress in Rubber, Plastics and Recycling Technology, 2006, 22, 195-210.

E. Buhlmann, S. Schulze, and T. Ziegler, Ageing of the new CPX reference tires during a measurement season, Inter Noise, 2013.

N. Delchev, P. Malinova, Effect of the modified solid product from waste tires pyrolysis on the properties of styrene-butadiene rubber based composites, Journal of Chemical Technology and Metallurgy, 2014, 49, 525-632.

S. S. Choi, J. C. Kim, Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes, Journal of Industrial and Engineering Chemistry, 2012, 18, 1166-1170, DOI:10.1016/j.jiec.2012.01.011.

M. A. Ismail, Modified lignin as replacement of carbon black in elastomers- For the development of sustainable tire technology, Master thesis, Department of Engineering and Chemical Science, 2020.

A. Fazli and D. Rodrigue, Waste rubber recycling: a review on the evolution and properties of thermoplastic elastomers, Materials, 2020, 13, DOI: 10.3390/ma13030782.

K. Pal, R. Rajasekar, D. J. Kang, Z. X. Zhang, S. K. Pal, C. K. Das, J. K. Kim, Effect of fillers on natural rubber/high styrene rubber blends with nano silica: Morphology and wear, Materials and Design, 2010, 31, 677-686, DOI: 10.1016/j.matdes.2009.08.014.

S. Ramarad, M. Khalid, C. T. Ratnam, A. L. Chuah, W. Rashmi, Waste tire rubber in polymer blends: A review on the evolution, properties and future, Progress in Materials Science, 2015, 72, 100-140, DOI: http://dx.doi.org/10.1016/j.pmatsci.2015.02.004.

A. Zanchet, A. Masiero, F. D. B. Sousa, and R. N. Brandalise, The influence of UV-accelerated aging process on industrial waste containing EPDM, Recycling, 2019, 4, DOI: 10.3390/recycling4020025.

M. Sagar, K. Nibedita, N. Manohar, K. R. Kumar, S. Suchismita, A. Pradnyesh, A. B. Reddy, E. R. Sadiku, U. N. Gupta, P. Lachit, J. Jayaramudu, A potential utilization of end-of-life tires as recycled carbon black in EPDM rubber, Waste Management, 2018, 74, 110-122, DOI: https://doi.org/10.1016/j.wasman.2018.01.003.

M. Poikelispaa, A. Das, W. Dierkes, J. Vuorinen, The Effect of Partial Replacement of Carbon Black by Carbon Nanotubes on the Properties of Natural Rubber/Butadiene Rubber Compound, Journal of Applied Polymer Science, 2013, DOI: 10.1002/APP.39543.

J. Boruta, M. Behal, The effect of degradation degree of the dispersed phase on the ozone aging of rubbers filled with crushed rubber powder, Die Angewandte Makromolekulare Chemie, 1990, 173-183.

K. Yan, S. Wang, D. Ge, J. Chen, S. T. and H. Sun, Laboratory performance of asphalt mixture with waste tire rubber and APAO modified asphalt binder, International Journal of Pavement Engineering, 2020, DOI: 10.1080/10298436.2020.1730837.

H. V. C. Paulo, R. P. Linilson, L. A. C. Argemiro, R. A. Angela, F. Leonardo, Rubber compound aging characterization applied to finite element tire models, Anais do Congresso Brasileiro de Polímeros, 210-213.

M. A. Motar, Inner tube of al-diwanyia tire based on natural rubber blends, Ibn Al-Haitham Journal for Pure & Applied Science, 2010, 23.

A. H. Ali, N. S. Mashaan, M. R. Karim, Investigation on aging resistance of rubberized bitumen binder, International Journal of Environment and Bioenergy, 2012, 2, 33-41.

N. A. Hassan, G. D. Airey, R. P. Jaya, N. Mashros, M. A. Aziz, A review of crumb rubber modification in dry mixed rubberized asphalt mixtures, Jurnal Teknologi (Sciences & Engineering), 2014, 70, 127-134.

A. H. Ali, N. S. Mashaan and M. R. Karim, Improving asphalt resistance to aging by using waste tire rubber, 1st International Conference on Innovation and Technology for Sustainable Built Environment (ICITSBE), 2012, 512-515.

N. S. Mashaan, A. H. Ali, M. R. Karim, and M. A. Aziz, A review on using crumb rubber in reinforcement of asphalt pavement, The Scientific World Journal, 2014, DOI: http://dx.doi.org/10.1155/2014/214612.

C. N. A. Jaafar, I. Zainol, N. S. Ishak, R. A. Ilyas, S. M. Sapuan, Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications, Journal of Materials Research and Technology, 2021, 12, 1026-1038.

A. Mohajerani, L. Burnett, J. V. Smith, S. Markovski, G. Rodwell, M. T. Rahman, H. Kurmus, M. Mirzababaei, A. Arulrajah, S. Horpibulsuk, F. Maghool, Recycling waste rubber tires in construction materials and associated environmental considerations: A review, Resources, Conservation and Recycling, 2020, 155, DOI: https://doi.org/10.1016/j.resconrec.2020.104679.

N. A. Hassan, A. A. A. Almusawi, M. Z. H. Mahmud, N. A. M. Abdullah, N. A. M. Shukry, N. Mashros, R. P. Jaya, N. I. M. Yusoff, Engineering properties of crumb rubber modified densegraded asphalt mixtures using dry process, IOP Conf. Series: Earth and Environmental Science, 2019, DOI: 10.1088/1755-1315/220/1/01200.

L. Zedler, M. Klein, M. R. Saeb, X. Colom, J. Canavate and K. Formela, Synergistic effects of bitumen plasticization and microwave treatment on short-term devulcanization of ground tire rubber, Polymers, 2018, 10, DOI: 10.3390/polym10111265.

C. Loderer, M. N. Part, L. D. Poulikakos, Effect of crumb rubber production technology on performance of modified bitumen, Construction and Building Materials, 2018, 191, 1159-1171,

DOI:https://doi.org/10.1016/j.conbuildmat. 2018.10.046.

G. Singh, A. Mahajan, M. Kumar, Comparative study of tire rubber and V-belt rubber: composition and mechanical properties, IOSR Journal of Mechanical and Civil Engineering, 2015, 12, 60-65, DOI: 10.9790/1684-12516065.

T. Kirushanthi, D. R. Ratnaweera and U. N. Etampawalav, Crumb rubber and silica reinforced rubber composites for outdoor flooring applications, Third Biennial International Symposium on Polymer Science and Technology, 2017.

D. Habibah, S. Saiwari, W. Dierkes, J. W. M. Noordermeer, Effect of ground tire rubber devulcanisates on the properties of a passenger car tire tread formulation, Advanced Materials Research, 2014, 844, 425-428, DOI: 10.4028/www.scientific.net/AMR.844.425.

Y. Liu, Y. Zhang, Z. Zhang, A. M. Wemyss, C. Wan, P. Song, and S. Wang, Effective thermal-oxidative reclamation of waste tire rubbers for producing high-performance rubber composites, ACS Sustainable Chemistry and Engineering, 2020, DOI: 10.1021/acssuschemeng.0c02292.

K. A. Owaid, Effect of aging on the rheological properties of the modified asphalt-rubber system using microwave technique, European Chemistry Bulletin, 2014, 3, 668-671, DOI: 10.17628/ECB.2014.3.668.

S. M. Egodage, J. F. Harper and S. Walpalage, Effect of maleimide curing on mechanical properties of ground tire rubber/waste polypropylene blends, Plastics, Rubber and Composites, 2012, 41, 332-340, DOI: 10.1179/1743289811Y.0000000042.

D. Habibah, S. Saiwari, W. Dierkes, J. W. M. Noordermeer, Influence of ground tire rubber devulcanisates on morphology and properties of tread tire formulation, Advanced Materials Research, 2014, 1024, 159-162, DOI: 10.4028/www.scientific.net/AMR.1024.159.

S. N. Russell, R. Maharaj and A. S. George, End-of-life management of scrap tires using crumb rubber modified TLA, International Journal of Applied Environmental Sciences, 2011, 6, 87-98.

J. L. F. Dias, L. G. P. Santos, S. D. Capitao, Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network, Construction and Building Materials, 2014, 73, 247-254, DOI: http://dx.doi.org/10.1016/j.conbuildmat.2014.09.110.

D. Feldman, Natural rubber nanocomposites, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2017, DOI: 10.1080/10601325.2017.1316671.

Z. Feng, W. Rao, C. Chen, B. Tian, X. Li, P. Li, Q. Guo, Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tires, Construction and Building Materials, 2016, 111, 495-501, DOI: http://dx.doi.org/10.1016/j.conbuildmat.2016.02.143.

K. Formela, A. Hejna, L. Zedler, X. Colom, J. Canavate, Microwave treatment in waste rubber recycling-recent advances and limitations, Express Polymer Letters, 2019, 13, 565-588, DOI: https://doi.org/10.3144/expresspolymlett.2019.48

J. Fu, L. Chen, H. Yang, Q. Zhong, L. Shi, W. Deng, X. Dong, Y. Chen, G. Zhao, Mechanical Properties, Chemical and Aging Resistance of Natural Rubber Filled with Nano-Al2O3, Polymer Composites, 2012, 404-411, DOI: 10.1002/pc.22162.

W. A. Halim, R. Junid, N. Sazali, Enhancement of flexural modulus and strength of epoxy nanocomposites with the inclusion of functionalized GNPs using Tween 80. J. Eng. Appl. Sci., 2024, 71, DOI: https://doi.org/10.1186/s44147-024-00405-x.

L. R. Honorato, R. C. R. Nunes, J. G. L. Cosme, L. L. Y. Visconte, A. C. C. Peres and J M. Costa, Effect of the cure system on aging resistance of natural rubber Compounds, Journal of Elastomers & Plastics, 2019, 1-13, DOI: 10.1177/0095244319859604.

A. M. Othman, Fracture resistance of rubber-modified asphaltic mixtures exposed to high-temperature cyclic aging, Journal of Elastomers And Plastics, 2006, 38, 19-30, DOI: 10.1177/0095244306059852.

S. M. R. S. Ismail, T. Chatterjee and K. Naskar, Superior heat-resistant and oil-resistant blends based on dynamically vulcanized hydrogenated acrylonitrile butadiene rubber and polyamide 12, Polymer Advanced Technologies, 2016, DOI: 10.1002/pat.3966.

L. Leng, Q. Han and Y. Wu, The aging properties and phase morphology of silica filled silicone rubber/butadiene rubber composites, RSC Advances, 2020, 10, 20272-20278, DOI: 10.1002/pat.3966.

A. K. Akinlabi, U. N. Okwu, F. E. Okieimen & N. A. Oladoja, Thermal aging properties and molecular transport of solvents through vulcanizates prepared from thioglycollic acid modified epoxidized low molecular weight natural rubber blends filled with admixtures of carbon black and carbonized rubber seed shell, International Journal of Polymeric Materials and Polymeric Biomaterials, 2006, 55, 1095-1114, DOI: http://dx.doi.org/10.1080/00914030600692091.

B. Li, J. Zhou, Z. Zhang, X. Yang and Y. Wu, Effect of short-term aging on asphalt modified using microwave activation crumb rubber, Materials, 2019, 12, DOI: 10.3390/ma12071039.

T. Zhou, J Zhou, Q Li, and B Li, Aging properties and mechanism of microwave-activated crumb rubber modified asphalt binder, Frontiers Materials, 2020, DOI: 10.3389/fmats.2020.603938.

Y. Zhang, H. Wei and Y. Dai, Influence of Different Aging Environments on Rheological Behavior and Structural Properties of Rubber Asphalt, Materials, 2020, 13, DOI: 10.3390/ma13153376.

A. Mostafa, A. A. Kasem, M. R. Bayoumi, M. G. El-Sebaie, The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature, Materials and Design, 2009, 30, 791-795, DOI: 10.1016/j.matdes.2008.05.065.

A. K. Naskar, S. K. De, A. K. Bhowmick, P. K. Pramanik, R. Mukhopadhyay, Characterization of ground rubber tire and its effect on natural rubber compound, Rubber Chemistry And Technology, 2000, 73, 902-911.

A. K. Naskara, A. K. Mukherjeea, R. Mukhopadhyay, Studies on tire cords: degradation of polyester due to fatigue, Polymer Degradation and Stability, 2004, 83, 173-180, DOI: 10.1016/S0141-3910(03)00260-X.

M. Nuzaimah, S. M. Sapuan, R. Nadlene and M. Jawaid, Recycling of waste rubber as fillers: A review, IOP Conf. Series: Materials Science and Engineering, 2018, 368, DOI:10.1088/1757-899X/368/1/012016.

Z. Xiong, Z. Tang, S. He, Z. Fang, Z. Chen, F. Liu, L. Li, Analysis of mechanical properties of rubberised mortar and influence of styrene–butadiene latex on interfacial behaviour of rubber–cement matrix, Construction and Building Materials, 2021.

M. Nuzaimah, S. M. Sapuan, R. Nadlene, M. Jawaid, Effect of surface treatment on the performance of polyester composite filled with waste glove rubber crumbs, Waste and Biomass Valorization, 2021, 12, 1061-1074, DOI: https://doi.org/10.1007/s12649-020-01008-2.

M. S. Waheed, M. Elahi, Effect of short term aging on unmodified and Local Crumb Rubber (LCR), Quest Research Journal, 2020, 18, 63-70.

N. K. Kushwaha, M. K. Jha, Value creation of natural rubber and its alternate possibilities, 68th Annual Session of Indian Institute of Chemical Engineers, 2015.

S. Jovanovic, V. Jovanovic, G. Markovic, M. M. Cincovic, J. B. Simendic, The effect of aging temperature on carbon black reinforced ternary rubber blend in railway industry, XVII International Scientific-Expert Conference on Railways, 2016, 245-248.

F. Motiee, T. Bigdeli, Prediction of Mechanical and Functional Features of Aged Rubber Composites Based on BR/SBR; Structure-Properties Correlation, Materials Research, 2020, 22, DOI: https://doi.org/10.1590/1980-5373-mr-2019-0226.

M. Rahmah, A. R. A. Khusyairi, H. N. Khairunnisya and M. S. Nurbalqis, Oven ageing versus uv ageing properties of natural rubber cup lump /epdm rubber blend with Mangosteen Powder (MPP) as natural antioxidant., IOP Conf. Series: Materials Science and Engineering, 2019, 548, DOI: 10.1088/1757-899X/548/1/012014.

M. R. Ibrahim, H. Y. Katman, M. R. Karim, S. Koting, and N. S. Mashaan, A review on the effect of crumb rubber addition to the rheology of crumb rubber modified bitumen, Advances in Materials Science and Engineering, 2013, DOI: http://dx.doi.org/10.1155/2013/415246.

J. R. Shelton, Aging and oxidation of elastomers.” Rubber Chemistry and Technology, 1957, 30, 1251-1290, DOI: https://doi.org/10.5254/1.3542760.

A. Alawais & R. P. West, Ultra-violet and chemical treatment of crumb rubber aggregate in a sustainable concrete mix, Journal of Structural Integrity and Maintenance, 2019, 4, 144-152, DOI: 10.1080/24705314.2019.1594603.

B. Moon, J. Lee, S. Park and C. Seok, Study on the aging behavior of Natural Rubber/Butadiene Rubber (NR/BR) blends using a parallel spring model, Polymers, 2018, 10, DOI: 10.3390/polym10060658.

K. M. Shatanawi, S. Biro, M. Naser & S. N. Amirkhanian, Improving the rheological properties of crumb rubber modified binder using hydrogen peroxide, Road Materials and Pavement Design, 2013, 14, 723-734, DOI: 10.1080/14680629.2013.812535.

R. Maharaj, A. S. George, S. N. Russell and D. S. Ackbarali, The Influence of Recycled Tire Rubber on the Rheological Properties of Trinidad Lake Asphalt and Trinidad Petroleum Bitumen, International Journal of Applied Chemistry, 2009, 5, 181-191.

Y. Wang, X. Zeng, H. Li & J. Guo, Structural Characterization of Hydroxyl-Terminated Polybutadiene-Bound 2, 2-Thiobis(4-methyl-6-tertbutylphenol) and its thermo-oxidative aging resistance for natural rubber vulcanizates, Journal of Macromolecular Science, Part B: Physics, 2012, 51, 1904-1920, DOI: 10.1080/00222348.2012.664452.

X. Zhang, D. Tian, W. Zhang, J. Zhu, and C. Lu, Morphology, foaming rheology and physical properties of ethylene- propylene diene Rubber/Ground Tire Rubber (GTR) composite foams: effect of mechanochemical devulcanisation of GTR, Progress in Rubber, Plastics and Recycling Technology, 2013, 29, 81-98.

M. Masłowski, A. Aleksieiev, J. Miedzianowska, M. E. Szmechtyk and K. Strzelec, Antioxidant and Anti–Aging Activity of Freeze–Dried Alcohol–Water Extracts from Common Nettle (Urtica dioica L.) and Peppermint (Mentha piperita L.) in Elastomer Vulcanizates, Polymer, 2022, 14, 1-23, DOI: https://doi.org/10.3390/polym14071460

A. Aljarmouzi and R. Dong, Sustainable Asphalt Rejuvenation by Using Waste Tire Rubber Mixed with Waste Oils, Sustainability, 2022, 14, 1-27, DOI: https://doi.org/10.3390/ su14148246

R. R. Pagar, S. R. Musale, G. Pawar, D. Kulkarni, and P. S. Giram, Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials, ACS Biomater. Sci. Eng., 2022, 8, 2161−2195, DOI: https://doi.org/10.1021/acsbiomaterials.1c01304

S. C. Ambilkar, G. L. Dhakar, B. P. Kapgate, A. Das, S. Hait, R. S. Gedam, R. Kasilingam and C. Das, Enhancing the material performance of chloroprene rubber (CR) by strategic incorporation of zirconia, Mater. Adv., 2022, 3, 2434–2446, DOI: 10.1039/d1ma00793a

V. V. Tyagi, K. Chopra, R. K. Sharma, A. K. Pandey, S. K. Tyagi, M. S. Ahmad, A. Sari, R. Kothari, A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability, Solar Energy Materials & Solar Cells, 2022, DOI: https://doi.org/10.1016/j.solmat.2021.111392

Z. Li, H. Liu, W. Chen, Y. Li, Z. Zhao, Y. Yin, M. Li, Influence of residual SB di-block in SBS on the thermo– oxidative aging behaviors of SBS and SBS modified asphalt, Materials and Structures, 2022, 55, DOI: https://doi.org/10.1617/s11527-022-01882-3

J. Hobson, G. Z. Yin, X. Yu, X. Zhou, S. G. Prolongo, X. Ao and D. Y. Wang, Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites, Materials, 2022, 1-15, DOI: https://doi.org/10.3390/ma15175867

M. Saied, A. Reffaee, S. Hamieda and S. L. Abd-El-Messieh, Eco-friendly polymer composite films based on waste polyvinyl chloride/sunflower seed cake for antimicrobial and antistatic applications, Pigment & Resin Technology, 2022, DOI: 10.1108/PRT-10-2021-0126

K. Y. Yang, Development and Characterisation of Thermal Responsive Shape Memory Natural Rubber, University of Nottingham Malaysia, 2022, pp. 1-88

D. S. Mahmoud, A. E. Elsayed, A. A. Reffaee and D. E. E. Nashar, Novel prepared nano potassium methyl siliconate as antioxidant for nitrile rubber, Polymers and Polymer Composites, 2022, 31, 1–18, DOI: 10.1177/0967391123115407

Z. Jia, C. Xu, R. Guan, X. Wang, Y. Deng, Simulation of the Chalking of Silicone Rubber Based on Tetramethylammonium-Hydroxide-Catalyzed Scission Reaction, Polymer Degradation and Stability, 2023, 208, DOI: https://doi.org/10.1016/j.polymdegradstab.2023.110251

Y. Yan, Y. Yu, J. Sima, C. Geng, J. Yang, Aging behavior of microplastics accelerated by mechanical fragmentation: alteration of intrinsic and extrinsic properties, Environmental Science and Pollution Research, 2023, 30, 90993–91006 DOI: https://doi.org/10.1007/s11356-023-28736-x

Q. Deng, C. Li, Y. Gan, Y. Li, A. Chen, L. Liu, S. Yi, J. Feng, Optimizing the formulation design and investigating the composite modification mechanism of pyrolysis carbon Black/Polyethylene/Synthetic plant ester composite modified asphalt , Construction and Building Materials, 2023, 406, DOI: https://doi.org/10.1016/j.conbuildmat. 2023.133468

C. Cong, M. Yuan, Han Wang, R, U. D. Peng, J. Ouyang, Advancing thermo-oxidative stability in silicone rubber with cerium-tin complex oxide, Polym Adv Technol., 2024, 35, 1-16, DOI: https://doi.org/10.1002/pat.6591 2024.

N. L. Costa, C. T. Hiranobe, H. P. Cardim, G. Dognani, J. C. Sanchez, J. A.Jaramillo Carvalho, G. B. Torres, L. L. Paim, L. F. Pinto, G. P. Cardim, F. C. Cabrera, R. J. Santos and M. J. Silva, A Review of EPDM (Ethylene Propylene Diene Monomer) Rubber-Based Nanocomposites: Properties and Progress , Polymers, 2024, 16, 1-35, DOI: https://doi.org/ 10.3390/polym16121720

C. Tian, S. Wang, C. Miao, C. Wang, L. Xu, N. Ning, M. Tian, Quantification of interfacial structure at nanoscale and its relationship with viscoelastic glass transition of SiO2/elastomer nanocomposites, Polymer, 2023, 271, DOI: https://doi.org/10.1016/j.polymer.2023.125798

L. Cai, X. Chen, A. K. Bhowmick, and R. Krishnamoorti, Unveiling the Pressure-Induced Dynamics on the Glass Transition Temperature of Hydrogenated Nitrile Rubber, Macromolecules, 2024, 57, 8576−8587, DOI: https://doi.org/10.1021/acs.macromol.4c01409

R. Luo, D. Kang, C. Huang, T. Yan, P. Li, H. Ren and Z. Zhang, Mechanical Properties, Radiation Resistance Performances, and Mechanism Insights of Nitrile Butadiene Rubber Irradiated with High-Dose Gamma Rays, Polymers, 2023, 15, 1-12, DOI: https://doi.org/ 10.3390/polym15183723

S. Li, R. Sun, Y. Gong, J. Cui, W. Sui, T. Wu, R. Liu, M. Zhang, Effects of dextran molecular weight on starch retrogradation and technological properties of Chinese steamed bread: Based on the rubber/ glass transition, International Journal of Biological Macromolecules, 2024, 270, DOI: https://doi.org/10.1016/j.ijbiomac.2024.131887

T. Alamfard, T. Lorenz and C. Breitkopf, Glass Transition Temperatures and Thermal Conductivities of Polybutadiene Crosslinked with Randomly Distributed Sulfur Chains Using Molecular Dynamic Simulation, Polymers, 2024, 16, 1-22, DOI: https:// doi.org/10.3390/polym16030384

D. Dhara, M. A. Rahman, E. Ruzicka, A. Karekar, D. Vlassopoulos, K. Saalwächter, B. Benicewicz, and S. K Kumar, Mechanical Properties of Polyisoprene-Based Elastomer Composites, Macromolecules, 2024, 57, 1448−1460, DOI: https://doi.org/10.1021/acs.macromol.3c01084

M. M. A. Kader, M.T.Abou Laila, M. S. S. El Deeb, E. O.Taha & A. S. El Deeb, Structural, radiation shielding, thermal and dynamic mechanical analysis for waste rubber/ EPDM rubber composite loaded with ¬Fe2O3 for green environment, Scientifc Reports, 2024, 14, DOI: https://doi.org/10.1038/s41598-024-62308-4




DOI: http://dx.doi.org/10.13171/mjc02501061807Zahan

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mediterranean Journal of Chemistry