Cover Image

Elaboration and characterization of new phosphate glasses based on natural phosphate and red clay: influence of the chemical composition on the chemical durability

Oumaima Jamal Eddine, Mehdi El Bouchti, Omar Cherkaoui, Hassan Hannache, Said Gmouh

Abstract


New phosphate glass formulations based on Moroccan natural phosphate minerals alone or with Moroccan red clay additive (containing the P2O5-SiO2-CaO-Al2O3-MgO-Fe2O3-K2O-Na2O-TiO2 complex) have been successfully prepared by the quenching method. The chemical composition of each of the elaborated phosphate glasses was determined by X-ray fluorescence analysis (XRF). These investigated phosphate glasses have an excellent homogeneity as was verified by SEM. Their amorphous behavior was confirmed by XRD and DSC. The increase in density and glass transition temperature due to the addition of clay is believed to be related to the crosslinking of the phosphate chains. Structural investigation of these phosphate glasses was carried out using FTIR and Raman spectroscopies. The results obtained show that the composition of these glasses contains a mixture of ultraphosphate and polyphosphate structural units. The concentrations of this mixture depending on the initial composition of the glass components. A correlation between the chemical composition and the chemical durability of the investigated glasses was studied. The results showed that the dissolution rate of the glasses decreases by increasing the clay composition up to a point. This can be explained by assuming the formation of oxygen bridges and strong bonds within the various glasses.

Full Text:

PDF

References


- M. Schumacher, L. Reither, J. Thomas, M. Kampschulte, U. Gbureck, A. Lode, and M. Gelinsky, Calcium phosphate bone cement/mesoporous bioactive glass composites for controlled growth factor delivery, Biomaterials Science, 2017, 5(3), 578-588.

- I. Waclawska, M. Szumera, and S. Justyna, Structural characterization of zinc-modified glasses from the SiO2-P2O5-K2O-CaO-MgO system, J. of Alloys and Compounds, 2016, 666, 352-358.

- N. Kitamura, A. Nomura, A. Saitoh,

H. Kobayashi, I. Amamoto, and H. Takebe, Effect of ZrO2 addition on water durability of FeO-Fe2O3-P2O5 glasses, J. of the Ceramic Society of Japan, 2018, 126(11), 948-951.

- L. Badr, Low-temperature conductivity and ion dynamics in silver iodide-silver metaphosphate glasses, Physical Chemistry Chemical Physics, 2017, 19(32), 21527-21531.

- H. Bih, L. Bih, B. Manoun, M. Azrour, B. Elouadi, and P. Lazor, Electrical Transport Properties of Iodine Oxide Phosphate Glasses Issued from The NaI-Li2O-WO3-P2O5 System, Moroccan Journal of Condensed Matter, 2010, 12(2).

- C. Chen, R. He, Y. Tan, B. Wang, S. Akhmadaliev, S. Zhou, S, and F. Chen, Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions, Optical Materials, 2016, 51, 185-189.

- M. Haouari, and N. Saad, On the Origin of the Large Stokes-Shift of the Emission of CdS Nanoparticles Embedded in a Phosphate Glass Matrix, J. of Cluster Science, 2018, 29(2),

-402.

- A. Chahine, M. Et-Tabirou, M. Elbenaissi, M. Haddad, and J.L. Pascal, Effect of CuO on the structure and properties of (50-x/2) Na2O-CuO-(50-x/2) P2O5 glasses. Materials chemistry and physics, 2004, 84(2-3), 341-347.

- N. Sharmin, N., and C.D. Rudd, Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review, Journal of Materials Science, 2017, 52(15), 8733-8760.

- G. K. Marasinghe, C.S. Ray, M. Karabulut, D. E Day, M. G. Shumsky, W.B. Yelon, and D.K. Shuh, Structural features of iron phosphate glasses, J. Non-Cryst Solids 1997, 222, 144-52.

- I. Ahmed, M. Lewis, I. Olsen, and J. C. Knowles, Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system, Biomaterials, 2004, 25(3), 491-499.

- H. Yung, P. Y. Shih, H. S. Liu, and T. S. Chin, Nitridation Effect on Properties of Stannous-Lead Phosphate Glasses, J. of the American Ceramic Society, 1997, 80(9), 2213-2220.

- R. A. Khan, A. J. Parsons, I. A. Jones, G. S. Walker, and C. D. Rudd, Degradation and interfacial properties of iron phosphate glass-fibre-reinforced PCL-based composite for synthetic bone replacement materials, Polymer-Plastics Technology and Engineering, 2010, 49(12), 1265-1274.

- D. S. Brauer, C. Rüssel, and J. Kraft, Solubility of glasses in the system P2O5-CaO-MgO-Na2O-TiO2: Experimental and modeling using artificial neural networks, J. of non-crystalline solids, 2007, 353(3), 263-270.

- C. S. Ray, X. Fang, M. Karabulut, G.K. Marasinghe, D.E. Day, Effect of melting temperature and time on iron valence and crystallization of iron phosphate glasses, J. Non-Cryst Solids 1999, 249, 1-16.

- M. Jerroudi, L. Bih, M. Azrour, B. Manoun, I. Saadoune, and P. Lazor, Investigation of Novel Low Melting Phosphate Glasses Inside the Na2O-K2O-ZnO-P2O5 System, J. of Inorganic and Organometallic Polymers and Materials, 2019, 1-11.

- G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, The structure of CaO-Na2O-MgO-P2O5 invert glass, J. of non-crystalline solids, 2001, 296(3), 212-223.

- F. Behrends, and H. Eckert, Mixed-Alkali Effects in Aluminophosphate Glasses: A Re-examination of the System [x Na2O (1-x) Li2O] 0.46 [y Al2O3 (1-y) P2O5] 0.54, The Journal of Physical Chemistry C, 2011, 115(34), 17175-17183.

- British Standards Institution, BS 10119, 2002, London.

- L. Abbas, L. Bih, A. Nadiri, Y. El Amraoui,

H. Khemakhem, and D. Mezzane, Chemical durability of MoO3-P2O5 and K2O-MoO3-P2O5 glasses, J. of Thermal Analysis and Calorimetry, 2007, 90(2), 453-458.

- M. Monsif, S. Rossignol, F. Allali, A. Zerouale, N. I. Kandri, E. Joussein, and R. Bertani, The implementation of geopolymers materials from Moroccan clay, within the framework of the valorization of the local natural resources, J. Mater. Environ. Sci, 2017, 8, 2704-2721.

- A. Qlihaa, S. Dhimni, F. Melrhaka, N. Hajjaji, and A. Srhiri, Physico-chemical characterization of a Morrocan clay, J. Mater. Environ. Sci, 2016, 7(5), 1741-1750.

- L. Ma, r. k. Brow, and M. E. Schlesinger, Dissolution behaviour of sodium-calcium polyphosphate glasses, Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, 2018, 59(5), 205-212.

- M. A. Cherbib, I. Khattech, L. Montagne, B. Revel, and M. Jemal, Structure properties relationship in calcium sodium metaphosphate and polyphosphate glasses, J. of Non-Crystalline Solids, 2018, 485, 1-13.

- -W. Jastrzębski, M. Sitarz, M. Rokita, and K. BuÅ‚at, Infrared spectroscopy of different phosphates structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 79(4), 722-727.

- C. Tan, I. Ahmed, A. J. Parsons, N. Sharmin, C. Zhu, J. Liu, and X. Liu, Structural, thermal and dissolution properties of MgO-and CaO-containing borophosphate glasses: effect of Fe2O3 addition, J. of materials science, 2017, 52(12), 7489-7502.

- R. O. Omrani, S. Krimi, J. J. Videau, I. Khattech, A. El Jazouli, and M. Jemal, Structural and thermochemical study of Na2O-ZnO-P2O5 glasses, J. of Non-Crystalline Solids, 2014, 390, 5-12.

- N. H. Ray, Composition-property relationships in inorganic oxide glasses, J. of Non-Crystalline Solids, 1974, 15(3), 423-434.

- P. Rajbhandari, L. Montagne, and G. Tricot, Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: Part II-insertion mechanism of Al2O3 and B2O3 in phosphate network characterized by 1D/2D solid-state NMR, Materials Chemistry and Physics, 2018, 218, 122-129.

- A. M. B. Silva, R. N. Correia, J. M. M. Oliveira, and M. H. V. Fernandes, Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy, J. of the European Ceramic Society, 2010, 30(6), 1253-1258.

- M. S. Hasan, I. Ahmed, A. J. Parsons, G. S. Walker, and C. A. Scotchford, Material characterisation and cytocompatibility assessment of quinternary phosphate glasses, J. of Materials Science: Materials in Medicine, 2012, 23(10), 2531-2541.

- M. K. Hwang, and B. K. Ryu, Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2, J. of the Korean Physical Society, 2016, 69(2), 157-163.

- A. Le Sauze, and R. Marchand, chemically durable nitrided phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra, J. of Non-Crystalline Solids, 2000, 263, 285-292.

- I. Waclawska, and M. Szumera, Reactivity of silicate-phosphate glasses in the soil environment, J. of Alloys and Compounds, 2009, 468(1-2), 246-253.

- H. K. Lee, S. J. Hwang, and W. H. Kang, Preparation of K2O-CaO-P2O5 eco-glass fertilizers and effect in crops, In Materials Science Forum, Trans Tech Publications, 2005, 486, 407-410.

- H. Gao, T. Tan, and D. Wang, Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium, J. of controlled release, 2004, 96(1), 29-36.

- K. Franks, V. Salih, J. C. Knowles, and I. Olsen, The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system, J. of Materials Science: Materials in Medicine, 2002, 13(6), 549-556.

- J. O. Byun, B. H. Kim, K. S. Hong, H. J. Jung, S. W. Lee, and A. A. Izyneev, Properties and structure of RO-Na2O-Al2O3-P2O5 (R= Mg, Ca, Sr, Ba) glasses, J. of non-crystalline solids, 1995, 190(3), 288-295.

- U. B. Chanshetti, V. A. Shelke, S. M. Jadhav,

S. G. Shankarwar, T. K. Chondhekar, A. G. Shankarwar, and M. S. Jogad, Density and molar volume studies of phosphate glasses, Facta universitatis-series: Physics, Chemistry and Technology, 2011, 9(1), 29-36.




DOI: http://dx.doi.org/10.13171/mjc93191012614sg

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Mediterranean Journal of Chemistry