Cover Image

The formation of interstellar organic molecules: H2C3O A DFT and ELF theoretical study

Hamza El Hadki, Zouhair Lakbaibi, Mohammed Salah, Khadija Marakchi, Oum Keltoum Kabbaj, Maria Luisa Senent, Najia Komiha

Abstract


This quantum study at B3LYP/6-311 ++ G (d, p) with ELF analysis were performed in order to understand the formation of propynal and cyclopropenone, two molecules detected in the interstellar medium. The formation of these molecules is supposed to be through reactions between carbon monoxide (CO) and acetylene (C2H2) in the cold conditions of interstellar clouds. All the structures, reagents, products and transition states, have been optimized and the geometrical parameters are given as well as the dipole moments. The reaction paths are elaborated and discussed here using the IRC method implemented in the Gaussian program. The determined activation energies allow an estimation of the rate constants. The ELF analysis performed here seems to be a valuable tool for screening the evolution of the bonds during the formation processes. The two reactions probably occur in one step. The propadienone, another possible isomer, has been also studied. It is formed through a third reaction. A stable triplet ground state of this molecule, the thermodynamic consideration and a small dipole moment can explain the fact that it is not detected yet in the interstellar medium. M06-2X and WB97XD functional were also used for comparing results.

Full Text:

PDF

References


- A. Zuiderwijk, H. Spiers, Sharing and re-using open data: A case study of motivations in astrophysics, International Journal of Information Management, 2019, 49, 228-241.

- F. Sauli, Applications of gaseous detectors in astrophysics, medicine and biology. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 323, 1-11.

- K. Demyk, Interstellar dust within the life cycle of the interstellar medium, EPJ Web of Conferences, 2011, 18, 03001.

- J. Lequeux, The Interstellar Medium; Astronomy and Astrophysics Library; Springer-VerlagBerlin Heidelberg, 2005, pp. 223.

- B.T. Draine. Physics of the Interstellar and Intergalactic Medium; Princeton University Press, 2011, pp. 560.

- 6. A.G.G.M. Tielens, L.J. Allamandola, Composition, Structure, and Chemistry of Interstellar Dust; ed. by D.J. Hollenbach, H.A. Thronson; Springer: Dordrecht, 1987, pp. 397-470.

- 7. E. Herbst, The synthesis of large interstellar molecules, International Reviews in Physical Chemistry, 2017, 36, 287-331.

- W.M. Irvine, R.D. Brown, D.M. Cragg, A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1, The Astrophysical Journal Letters, 1988, 335, L89-L93.

- M. Ohishi, N. Kaifu, Chemical and physical evolution of dark clouds Molecular spectral line survey toward TMC-1, Faraday Discuss, 1998, 109, 205-216.

- B.E. Turner, A molecular line survey of Sagittarius B2 and Orion-KL from 70 to 115 GHz. II - Analysis of the data, The Astrophysical Journal Supplement Series, 1991, 76, 617-686.

- J.M. Hollis, P.R. Jewell, F.J. Lovas, A. Remijan, Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar, The Astrophysical Journal Letters, 2004, 613, L45-L48.

- R.A. Loomis, B.A. McGuire, C. Shingledecker, C.H. Johnson, S. Blair, A. Robertson, A. J. Remijan, Investigating the minimum energy principle in searches for new molecular species—The case of H2C3O isomers, The Astrophysical Journal, 2015, 799, 34-41.

- J. Hollis, A. J. Remijan, P. Jewell, F. Lovas, Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule, The Astrophysical Journal, 2006, 642, 933-939.

- F. Abuâ€Awwad, P. Politzer, Variation of parameters in Becke-3 hybrid exchange-correlation functional, Journal of Computational Chemistry, 2000, 21, 227-238.

- C. Lee, C. Sosa, Local density component of the Lee-Yang–Parr correlation energy functional, J. Chem. Phys., 1994, 100, 9018–9024.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.Izmaylov, J. L. Sonnenberg, D. WilliamsYoung, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.Kudin, V. N. Staroverov, T. Keith, R.Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L.Martin, K. Morokuma, O. Farkas, J. B.Foresman, D. J. Fox, Gaussian 09, GaussianInc, Wallingford CT, 2009.

- C. Gonzalez, H.B. Schlegel. An improved algorithm for reaction path following, J. Chem. Phys., 1989, 9, 2154-2161.

- A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 1988, 88, 899-926.

- B. Silvi, R.J. Gillespie, The ELF Topological Analysis Contribution to Conceptual Chemistry and Phenomenological Models. In the Quantum Theory of Atoms in Molecules; eds by C. F. Matta and R. J. Boyd, John Wiley & Sons, 2007, pp. 141-162.

- T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal of Computational Chemistry, 2012, 33, 580-592.

- R. Dennington, T.A. Keith, J.M. Millam, Semichem. Inc., Shawnee Mission, KS, 2009.

- Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor Chem Account, 2008, 120, 215-241.

- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comp. Chem, 2006, 27, 1787-1799.

- R.D. Brown, R. Champion, P.S. Elmes, P.D. Godfrey, The structure of propadienone, J. Am. Chem. Soc., 1985, 107, 4109-4112.

- R.D. Brown, P.D. Godfrey, R. Champion,

D. McNaughton, Microwave spectrum and unusual geometry of propadienone (methylene ketene), J. Am. Chem. Soc., 1981, 103, 5711-5715.

- A. Komornicki, C.E. Dykstra, M.A. Vincent, L. Radom, A theoretical study of propadienone and its isomers propynal and cyclopropenone, J. Am. Chem. Soc., 1981, 103, 1652-1656.

- L. Radom, An ab initio molecular orbital study of the structure and properties of propadienone (methyleneketene), Aust. J. Chem., 1978, 31, 1-9.

- C.C. Costain, J.R. Morton, Microwave Spectrum and Structure of Propynal (H–C≡C–CHO), J. Chem. Phys., 1959, 31, 389-393.

- R.C. Benson, W.H. Flygare, M. Oda, R. Breslow, Microwave spectrum, substitutional structure, and Stark and Zeeman effects in cyclopropenone, J. Am. Chem. Soc., 1973, 95, 2772-2777.

- A. Karton, D. Talbi, Pinning the most stable HxCyOz isomers in space by means of high-level theoretical procedures, Chemical Physics, 2014, 436, 22-28.

- C. N. Shingledecker, S.Ãlvarez-Barcia, V. H.Korn, J.Kästner, The Case of H2C3O Isomers, Revisited: Solving the Mystery of the Missing Propadienone, The Astrophysical Journal, 2019, 878, 80-85.




DOI: http://dx.doi.org/10.13171/mjc93190924420nk

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Mediterranean Journal of Chemistry