Cover Image

Optimization of adsorption of cationic dye from aqueous solution by biochar from artichoke waste using response surface methodology

Fatima Ouzidan, Nadia Amardo, Mhammed El Kouali, Mohammed Talbi

Abstract


The use of experimental design and in particular the response surface methodology (RSM) allowed the determination of the influence of the simultaneous effects and the interaction of the operating parameters on the methylene blue removal efficiency. The parameters studied were the initial concentration of the adsorbate, the stirring speed, mass and particle size of the adsorbent. The results show that the application of RSM allows describing the influence of these four experimental parameters on the treatment effectiveness. The second-order model obtained, for the Methylene Blue (MB) removal efficiency was validated by using different statistical approaches. The use of the ANOVA showed that the model is significant and in functional adequacy with the experimental results.

 


Full Text:

PDF

References


- N. Guettai, H. A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension, Part I: Parametric study. Desalination, 2005, 185, 427-437.

- R. Han, Y. Wang, W. Zou, Y. Wang, J. Shi, Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in a fixed-bed column, J Hazard Mater, 2007, 145, 331-335.

- G. Crini, Studies on adsorption of dyes on beta-cyclodextrin polymer, Bioresour Technol, 2003, 90, 193–198.

- R. Malarvizhi, N. Sulochana, Sorption Isotherm and Kinetic Studies of Methylene Blue Uptake onto Activated Carbon Prepared from Wood Apple Shell, Journal of Environmental Protection Science, 2008, 2, 40-46.

- V. K. Garg, M. Amita, R. Kumar, R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste, Dyes Pigments, 2004, 63, 243–250.

- X. Zhang, T. Lu, X. Xu, Y. Wang, The fabrication of a nanoscale polyoxometalate based magnetic adsorbent and its selective adsorption of cationic dyes, J Coord Chem., 2017, 70, 60–70.

- I. E. Ouahabi, R. Slimani, I. Hachoumi, F. Anouar, N. Taoufik, A. Elmchaouri, S. Lazar, Adsorption of a cationic dye (Yellow Basic 28) onto the calcined mussel shells: Kinetics, Isotherm and Thermodynamic Parameters, Mediterr J Chem., 2015, 4, 261–270.

- A. K. Sharma, B. S. Kaith, N. Sharma, J. K. Bhatia, V. Tanwar, S. Panchal, S. Bajaj, others, Selective removal of cationic dyes using response surface methodology optimized gum acacia-sodium alginate blended superabsorbent, Int J Biol Macromol., 2019, 124, 331–345.

- H. Mehr, J. Saffari, S. Mohammadi, S. Shojaei, The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model, Int J Environ Sci Technol., 2019, 1–10.

- S. Shojaei, S. Khammarnia, S. Shojaei, M. Sasani, Removal of reactive red 198 by nanoparticle zero-valent iron in the presence of hydrogen peroxide, J Water Environ Nanotechnol., 2017, 2, 129–135.

- M. Álvarez, L. Ilzarbe, E. Viles, M. Tanco, The use of genetic algorithms in response surface methodology, Qual Technol Quant Manag., 2009, 6, 295–307.

- M. S. Chiou, H. Y. Li, Adsorption behavior of reactive dye in aqueous solution on chemically cross-linked chitosan beads, Chemosphere, 2003, 50, 1095–1105.

- M. Özacar, I. A. Şengil, Adsorption of metal complex dyes from aqueous solutions by pine sawdust, Bioresour Technol, 2005, 96, 791–795.

- R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite, Chem Eng J., 2009, 145, 496–504.

- L. Shi, L. Hu, J. Zheng, M. Zhang, J. Xu, Adsorptive removal of methylene blue from aqueous solution using a Ni-metal organic framework material, J Dispers Sci Technol., 2016, 37, 1226–1231.

- I. Lebkiri, B. Abbou, L. Kadiri, A. Ouass, Y. Essaadaoui, A. Habssaoui, E. H. Rifi, A. Lebkiri, Removal of methylene blue dye from aqueous solution using a superabsorbant hydrogel the polyacrylamide: isotherms and kinetic studies, Mediterr J Chem., 2019, 9, 337–346.

- B. S. Kaith, U. Shanker, B. Gupta, others, One-pot green synthesis of polymeric nanocomposite: biodegradation studies and application in sorption-degradation of organic pollutants, J Environ Manage, 2019, 234, 345–356.

- A. K. Sharma, B. S. Kaith, V. Tanwar, J. K. Bhatia, N. Sharma, S. Bajaj, S. Panchal, others, RSM-CCD optimized sodium alginate/gelatin-based ZnS-nanocomposite hydrogel for the effective removal of Dietrich scarlet and crystal violet dyes, Int J Biol Macromol., 2019, 129, 214–226.

- C. Pierre, Les plans d’expériences partie 1: Principes généraux, Rev Contrôles-Essais-Mes, 2005, 69–72.

- J. Goupy, Plans d’expériences, Ed. Techniques Ingénieur, 2006.

- A. K. Sharma, B. S. Kaith, S. Bajaj, J. K. Bhatia, S. Panchal, N. Sharma, V. Tanwar, others, Efficient capture of eosin yellow and crystal violet with high-performance xanthan-acacia hybrid super-adsorbent optimized using response surface methodology, Colloids Surf B Biointerfaces, 2019, 175, 314–323.

- J. Goupy, L. Creighton, Introduction aux plans d’expériences, Paris Fr, 2001.

- K. Adinarayana, P. Ellaiah, B. Srinivasulu, R. B. Devi, G. Adinarayana, Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation, Process Biochem., 2003, 38, 1565–1572.

- A. V. Schenone, L. O. Conte, M. Botta, O. M. Alfano, Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM)., J Environ Manage, 2015, 155, 177–183.

- A. S. Bueno, C. M. Pereira, B. Menegassi, J. A. G. Arêas, I. A. Castro, Effect of extrusion on the emulsifying properties of soybean proteins and pectin mixtures modelled by response surface methodology, J Food Eng., 2009, 90, 504–510.

- R. Baggio, D. Contreras, Y. Moreno, R. Arrue, I. Paulus, O. Peña, J.-Y. Pivan, Magneto-structural study and synthesis optimization of a phosphovanadate copper complex,[Cu(VO)2 (PO4)2 (H2O)4]n, J Coord Chem., 2012, 65, 2319–2331.

- S. E. A. El Hassani, A. Driouich, H. Mellouk, B. Bejjany, A. Dani, K. Digua, Extraction of phenolic from Moroccan grape pomace: Optimization of decoction extraction of phenolic compounds using response surface methodology, Mediterr J Chem., 2018, 7, 423–432.

- J. Ahmadi, M. Davoodabadi Farahani, B. Mehdizadehd, M. Pirkamali, others, Removal of crystal violet using nanozeolite-x from aqueous solution: Central composite design optimization study, J Water Environ Nanotechnol, 2019, 4, 40-47.

- C. Bodson, Application de la technologie analytique des procédés dans l’étude de l’homogénéité de mélanges de poudres pour compression directe, 2007.

- O. Fatima, E. K. Mhamed, T. Mohamed, A. Rachid, Adsorption of methylene blue onto artichoke waste, Orient J Chem., 2015, 31, 2037–2041.

- S. Shojaei, Optimization of process variables by the application of response surface methodology for dye removal using nanoscale zero-valent iron, Int J Environ Sci Technol., 2019, 16, 4601–4610.

- A. Kunamneni, K. S. Kumar, S. Singh, Response surface methodological approach to optimize the nutritional parameters for enhanced production of -amylase in solid-state fermentation by Thermomyces lanuginosus, Afr J Biotechnol., 2005, 4, 708–716.

- M. Y. Can, Y. Kaya, O. F. Algur, Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris, Bioresour Technol., 2006, 97, 1761–1765.

- B. K. Körbahti, N. Aktaş, A. Tanyolaç, Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology, J Hazard Mater., 2007, 148, 83–90.

- S. Shojaei, S. Shojaei, M. Pirkamali, Application of Box–Behnken Design Approach for Removal of Acid Black 26 from Aqueous Solution Using Zeolite: Modeling, Optimization, and Study of Interactive Variables, Water Conserv Sci Eng., 2019, 4, 13–19.

- D. Mathieu, J. Nony, R. Phan-Tan-Luu, NemrodW, version 2000, LPRAI Marseille, 2000.

- A. K. Sharma, B. S. Kaith, S. Panchal, J. K. Bhatia, S. Bajaj, V. Tanwar, N. Sharma, others, Response surface methodology directed synthesis of luminescent nanocomposite hydrogel for trapping anionic dyes, J Environ Manage, 2019, 231, 380–390.

- S. Shojaei, S. Shojaei, M. Sasani, The efficiency of eliminating Direct Red 81 by Zero-valent Iron nanoparticles from aqueous solutions using response surface model (RSM), Model Earth Syst Environ., 2017, 3, 27.

- K. Ravikumar, S. Krishnan, S. Ramalingam, K. Balu, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent, Dyes Pigments, 2007, 72, 66–74.

- J. Paik, S. Vogel, R. Piantedosi, A. Sykes, W. S. Blaner, K. Swisshelm, 9-cis-retinoids: biosynthesis of 9-cis-retinoic acid, Biochemistry, 2000, 39, 8073–8084.




DOI: http://dx.doi.org/10.13171/mjc10102002031211fo

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mediterranean Journal of Chemistry