Cover Image

Comparative study between the Titanium Phosphate TiP2O7 and the Phosphate Fertilizers in the catalysis of the Quinazolin-4(3H)-one derivatives synthesis

Youssef Merroun, Soukaina Chehab, Tourya Ghailane, Rachida Ghailane, Said Boukhris, Amina Hassikou, Nouzha Habbadi, Brahim Lakhrissi, Abdelaziz Souizi

Abstract


A simple and efficient method for the synthesis of quinazolin-4(3H)-one derivatives via condensation of anthranilamide with aromatic aldehyde catalyzed by monoammonium phosphate (MAP), diammonium phosphate (DAP), and triple superphosphate (TSP), were developed.  The modification of these three phosphate fertilizers using titanium tetrachloride (TiCl4) has increased their catalytic efficiency. The prepared titanium phosphate (TiP2O7) was characterized using microscopic and spectroscopic methods, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared spectroscopy (IR). The TiP2O7 was applied for the first time as a heterogeneous catalyst in quinazolin-4(3H)-ones synthesis. High yields and short reaction times were observed in the determined optimal condition (solvent nature, volume, and catalyst amount). This study shows that the TiP2O7 presents an exciting catalytic activity and long-term durability compared to those of MAP, DAP, and TSP.

Full Text:

PDF

References


- M.A. Sabry, A.H. Ewida, S.G. Hassan, A.M. Ghaly, I.H. El-Subbagh, Synthesis, Antitumor Testing and Molecular Modeling Study of Some New 6-Substituted Amido, Azo or Thioureido-Quinazolin-4(3H)-Ones, Bioorganic Chemistry, 2019, 88, 102923.

- S. Gatadi, T.V. Lakshmi, S. Nanduri, 4(3H)-Quinazolinone Derivatives: Promising Antibacterial Drug Leads, European Journal of Medicinal Chemistry, 2019, 170, 157-172.

- R.M. Chang, A.G. Zeng, W. Du, X.Y. Xu, S.J. Zuo, C. Chang, Q. Fu, An HPLC Method for the Determination of a Novel Anti-Hypertension Agent 6,7-Dimethoxy-3-[4-(4-Fluorobenzyloxy)-3-Methoxyphenylmethyl]Quinazolin-4(3H )-one in Rat Plasma: Application to Pharmacokinetic Study: An HPLC Method for the Determination of Compound DFMQ-19, Biomed. Chromatogr., 2016, 30 (7), 1118-1123.

- M. S. Raghu, C.B.P. Kumar, K.Y. Kumar, M.K. Prashanth, B.K. Jayanna, Synthesis, Characterization, and Biological Evaluation of Novel 3-(4-Chlorophenyl)-2-(Substituted)Quinazolin-4(3H)-One Derivatives as Multi-Target Anti-Inflammatory Agents, J. Heterocyclic Chem., 2019, 56 (7), 2046-2051.

- Z. Hajimahdi, R. Zabihollahi, M.R. Aghasadeghi, A. Zarghi, Design, Synthesis, Docking Studies and Biological Activities Novel 2,3- Diaryl-4-Quinazolinone Derivatives as Anti-HIV-1 Agents, C.H.R., 2019, 17 (3), 214–222.

- H. Ighachane, M.H. Sedra, H.B. Lazrek, Synthesis, and Evaluation of Antifungal Activities of (3H)-Quinazolin-4-One Derivatives against Tree Plant Fungi, J. Mater. Environ. Sci., 2017, 8 (1), 134-143.

- C.A. Mosley, T.M. Acker, K.B. Hansen, P. Mullasseril, K.T. Andersen, P. Le, K.M. Vellano, H. Bräuner-Osborne, D.C. Liotta, S.F. Traynelis, Quinazolin-4-One Derivatives: A Novel Class of Noncompetitive NR2C/D Subunit-Selective N -Methyl- D -Aspartate Receptor Antagonists, J. Med. Chem., 2010, 53 (15), 5476-5490.

- P.M. Chandrika, A.R.R. Rao, B. Narsaiah, M.B. Raju, Quinazoline derivatives with potent anti-inflammatory and anti-allergic activities, Int. J. Chem. Sci., 2008, 6 (3), 1119-1146.

- W. Guo, L.Y. Zheng, Y.D. Li, R.M. Wu, Q. Chen, D.Q. Yang, X.L. Fan, Discovery of Molluscicidal and Cercaricidal Activities of

-Substituted Quinazolinone Derivatives by a Scaffold Hopping Approach Using a Pseudo-Ring Based on the Intramolecular Hydrogen Bond Formation, European Journal of Medicinal Chemistry, 2016, 115, 291-294.

- R. O. Dempcy, E.B. Skibo, Rational Design of Quinazoline-Based Irreversible Inhibitors of Human Erythrocyte Purine Nucleoside Phosphorylase, Biochemistry, 1991, 30 (34), 8480-8487.

- J.F. Liu, Rapid Syntheses of Biologically Active Quinazolinone Natural Products Using Microwave Technology, C. O. S., 2007, 4 (2), 223-237.

- S.K. Ghosh, R. Nagarajan, Total Synthesis of Penipanoid C, 2-(4-Hydroxybenzyl)Quinazolin-4(3H)-One and NU1025, Tetrahedron Letters, 2016, 57 (38), 4277-4279.

- T. McC Paterson, R.K. Smalley, H. Suschitzky, 1,2,3-Benzotriazin-4-Ones, and Related Systems. Part III1. Thermal Decomposition of

-Arylideneamino-1,2,3-Benzotriazin-4-Ones. A New Synthesis of 2-Arylquinazolin-4-Ones, Synthesis, 1975, 1975 (03), 187-189.

- M. Nikpassand, L. Zare Fekri, K. F. Sina, S. Z. Abed, O. Marvi, 3,3′-(butane-1,4-diyl)bis (1,2-dimethyl-1H-imidazol-3-ium) dibromide [BDBIm] Br-An efficient reusable ionic liquid for the microwave-assisted Synthesis of quinazolinones, Russ J Gen Chem., 2015, 85 (8), 1959–1964.

- J. X. Chen, H.Y. Wu, W.K. Su, A Facile Synthesis of 2,3-Dihydro-2-Aryl-4(1H)-Quinazolinones Catalyzed by Scandium(III) Triflate, Chinese Chemical Letters, 2007, 18 (5), 536-538.

- D. Shi, L. Rong, J. Wang, Q. Zhuang, X. Wang, H. Hu, Synthesis of Quinazolin-4(3 H )-Ones and 1,2-Dihydroquinazolin-4(3H )-Ones with the Aid of a Low-Valent Titanium Reagent., Tetrahedron Letters, 2003, 44 (15), 3199-3201.

- G.W. Wang, C.B. Miao, H. Kang, Benign and Efficient Synthesis of 2-Substituted 4(3H)-Quinazolinones Mediated by Iron(III) Chloride Hexahydrate in Refluxing Water, BCSJ., 2006, 79 (9), 1426-1430.

- A. Nasreen, R.M. Borik, Cobalt(II) Chloride Catalyzed One-Pot Synthesis of 2-Substituted and 3-Substituted-4(3H)-Quinazolinones, Orient. J. Chem., 2014, 30 (2), 761-768.

- R.J. Abdel-Jalil, W. Voelter, M. Saeed, A Novel Method for the Synthesis of 4(3H)-Quinazolinones, Tetrahedron Letters, 2004, 45 (17), 3475-3476.

- R. Cheng, T. Guo, D. Zhang-Negrerie, Y. Du, K. Zhao, One-Pot Synthesis of Quinazolinones from Anthranilamides and Aldehydes via

p-Toluenesulfonic Acid-Catalyzed Cyclocondensation and Phenyliodine Diacetate Mediated Oxidative Dehydrogenation, Synthesis, 2013, 45 (21), 2998-3006.

- H. Kang, W. Wang, Q. Sun, S. Yang, J. Jin, X. Zhang, X. Ren, J. Zhang, J. Zhou, Microwave-Assisted Synthesis of Quinazolin-4(3H)-ones Catalyzed by SbCl3, Heterocyclic Communications, 2018, 24 (6), 293-296.

- Y.H.Vo, T.V. Le, H.D. Nguyen, T.A. To, H. Q. Ha, T.A. Nguyen, A.N.Q. Phan, N.T.S. Phan, Synthesis of Quinazolinones and Benzazoles Utilizing Recyclable Sulfated Metal-Organic Framework-808 Catalyst in Glycerol as Green Solvent, Journal of Industrial and Engineering Chemistry, 2018, 64, 107-115.

- Z. Li, J. Dong, X. Chen, Q. Li, Y. Zhou, S.F. Yin, Metal- and Oxidant-Free Synthesis of Quinazolinones from β -Ketoesters with

o -Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C–C Bond Cleavage, J. Org. Chem., 2015, 80 (19), 9392-9400.

- G. Shen, H. Zhou, Y. Sui, Q. Liu, K. Zou, FeCl3-Catalyzed Tandem Condensation/Intramolecular Nucleophilic Addition/C–C Bond Cleavage: A Concise Synthesis of 2-Substitued Quinazolinones from 2-Aminobenzamides and 1,3-Diketones in Aqueous Media, Tetrahedron Letters, 2016, 57 (5), 587-590.

- M.H. Sayahi, S. Bahadorikhalili, S.J. Saghanezhad, M. Mahdavi, Copper (II)-Supported Polyethylenimine-Functionalized Magnetic Graphene Oxide as a Catalyst for the Green Synthesis of 2-Arylquinazolin-4(3H)-ones, Res Chem Intermed., 2018, 44 (9), 5241-5253.

- Z.L. Ren, H.H. Kong, W. T. Lu, M. Sun, M.W. Ding, One-Pot Synthesis of Quinazolin-4(3H)-ones and Fused Quinazolinones by a Palladium-Catalyzed Domino Process, Tetrahedron, 2018, 74 (1), 184-193.

- Y. Merroun, S. Chehab, T. Ghailane, M. Akhazzane, A. Souizi, R. Ghailane, Preparation of Tin-Modified Mono-Ammonium Phosphate Fertilizer and Its Application as Heterogeneous Catalyst in the Benzimidazoles and Benzothiazoles Synthesis, Reac Kinet Mech Cat., 2019, 126 (1), 249-264.

- S.Chehab, Y. Merroun, T. Ghailane, R. Ghailane, S. Boukhris, M. Akhazzane, A. Kerbal, A. Souizi, Synthesis of 9-Arylhexahydroacridine-1,8-Diones Using Phosphate Fertilizers as Heterogeneous Catalysts, Russ J Org Chem., 2019, 55 (9), 1380-1386.

- A. El Hallaoui, S. Chehab, B. Malek, O. Zimou, T. Ghailane, S. Boukhris, A. Souizi, R. Ghailane, Valorization of the Modified Mono Ammonium Phosphate by Cobalt in the Synthesise of

,4‐Dihydropyrano[c]Chromene Derivatives, ChemistrySelect., 2019, 4 (11), 3062–3070.

- A. E. Hallaoui, S. Chehab, T. Ghailane, B. Malek, O. Zimou, S. Boukhriss, A. Souizi, R. Ghailane, Application of Phosphate Fertilizer Modified by Zinc as a Reusable Efficient Heterogeneous Catalyst for the Synthesis of Biscoumarins and Dihydropyrano

,2-c] Chromene-3-Carbonitriles under Green Conditions, Polycyclic Aromatic Compounds, 2020, 1–20.

- I. Bahammou, B. Malek, T. Ghailane, R. Ghailane, S. Boukhris, A. Souizi, A Green and Efficient Process for the Synthesis of Benzothiazinones Using Phosphate Fertilizers MAP, DAP, and TSP as Heterogeneous Catalysts, Journal of the Turkish Chemical Society Section A: Chemistry, 2019, 6 (3), 349–354.

- O. Zimou, B. Malek, A. Elhallaoui, T. Ghailane, R. Ghailane, S. Boukhris, N. Habbadi, A. Hassikou, A. Souizi, Valorization of the Phosphate Fertilizers Catalytic Activity in

-(Benzothiazolylamino) Methyl-2-Naphthol Derivatives Synthesis, Bull. Chem. React. Eng. Catal., 2019, 14 (2), 238.

- S. Sibous, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, A. Souizi, Easy Synthesis of 3,4-dihydropyrimidin -2-(1H)-ones using phosphate fertilizers MAP, DAP, and TSP as efficient catalysts, Journal of the Turkish Chemical Society, Section A: Chemistry, 2017, 4 (2), 1-12.

- Y. Merroun, S. Chehab, T. Ghailane, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, B. Lakhrissi, A. Souizi, An Effective Method to Synthesize 2,3-Dihydroquinazolin-4(1H)-One Using Phosphate Fertilizers (MAP, DAP, and TSP) as Green Heterogeneous Catalysts, Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5 (1), 303-316.

- S. Sibous, T. Ghailane, S. Houda, R. Ghailane, S. Boukhris, A. Souizi, Green, and Efficient Method for the Synthesis of 1,5-Benzodiazipines Using Phosphate Fertilizers as Catalysts under Free Solvent, Mediterr.J.Chem., 2017, 6 (2), 53-59.

- Z. Benzekri, H. Serrar, A. Zarguil, S. Boukhris, A. Souizi, Snail Shell as a Natural and Highly Efficient Catalyst for the Synthesis of Imidazole Derivatives. 2018, 8 (1), 1-7.

- I. Bahammou, A. Esaady, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, A. Souizi, Direct use of mineral fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions, Mediterr J Chem., 2016, 5 (6), 615-623.

- S. Chehab, Y. Merroun, T. Ghailane, N. Habbadi, S. Boukhris, A. Hassikou, R. Ghailane, M. Akhazzane, A. Kerbal, A. Daich, A. Souizi,

A New Process for Na2Ca(HPO4)2 Synthesis and Its Application as a Heterogeneous Catalyst in Knoevenagel Condensation, Mediterr.J.Chem., 2018, 7 (1), 39-55.

- S. Chehab, Y. Merroun, T. Ghailane, R. Ghailane, S. Boukhris, A. Souizi, A Green and Efficient Method for The Synthesis of

,4-Dihydropyrano[c]Chromene Using Phosphate Fertilizers (MAP, DAP, and TSP) as Heterogeneous Catalysts, Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5 (2), 355–370.

- Y. Wen, L. Chen, Y. Pang, Z. Guo, D. Bin, Y. Wang, C. Wang, Y. Xia, TiP2O7, and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries, ACS Appl Mater Interfaces, 2017, 9 (9),

-8082.

- A. Lapina, C. Chatzichristodoulou, J. Hallinder, P. Holtappels, M. Mogensen, Electrical conductivity of titanium pyrophosphate between 100 and 400 °C: effect of sintering temperature and phosphorus content, J Solid State Electrochem., 2014, 18, 39-47.

- N. Kitamura, Protonic conduction in rare-earth orthophosphates with the monazite structure, Solid State Ionics, 2003, 162–163, 161–165.

-W. Wu, S. Shanbhag, A. Wise, J. Chang, A. Rutt, J. F. Whitacre, High-Performance TiP2O7Based Intercalation Negative Electrode for Aqueous Lithium-Ion Batteries via a Facile Synthetic Route, J Electrochem Soc., 2015, 162 (9), A1921–A1926.

- M. Xi, L. Wu, J. Li, X. Li, Hierarchical flower-like titanium phosphate derived from H-titanate nanotubes for photocatalysis, J Mater Sci., 2015, 50, 7293–7302.

- A. Muto, K. Ida, T. Bhaskar, Md. A. Uddin, S. Takashima, T. Hirai, Y. Sakata, Preparation of novel TiP2O7 carbon composite using ion-exchanged resin (C467) and evaluation for photocatalytic decomposition of 2-propanol, Applied Catalysis A: General, 2004, 260 (2), 163–168.

- X. Meng, M. Hao, J. Shi, Z. Cao, W. He, Y. Gao, J. Liu, Z. Li, Novel visible light response Ag3 PO4 /TiP2O7 composite photocatalyst with low Ag consumption, Advanced Powder Technology, 2017, 28 (3), 1047-1053.

- Y. Wang, X. Meng, G. Chen, P. Zhao, Direct Synthesis of quinazolinones by heterogeneous Cu(OH)X /OMS-2 catalyst under oxygen, Catalysis Communications, 2018, 104, 106–111.

- S. Rostamizadeh, M. Nojavan, R. Aryan, E. Isapoor, M. Azad, Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives, Journal of Molecular Catalysis A: Chemical, 2013, 374–375, 102–110.

- T. Li, M. Chen, L. Yang, Z. Xiong, Y. Wang, F. Li, D. Chen, Copper-catalyzed consecutive reaction to construct quinazolin-4(3H)-ones and pyrido[2,3-d] pyrimidin-4(3H)-ones, Tetrahedron, 2016, 72, 868–874.

- Y. H. Shang, L.-Y. Fan, X.-X. Li, M.-X. Liu, Y(OTf)3 -catalyzed heterocyclic formation via aerobic oxygenation: An approach to dihydro quinazolinones and quinazolinones, Chinese Chemical Letters, 2015, 26, 1355–1358.

- A.K. Rai, J. Gim, J. Song, V. Mathew, L.T. Anh, J. Kim, Electrochemical and Safety Characteristics of TiP2O7-Graphene Nanocomposite Anode for Rechargeable Lithium-Ion Batteries, Electrochimica Acta, 2012, 75, 247–253.

- Y. Hao, C. Wu, Y. Cui, K. Xu, Z. Yuan, Q. Zhuang, Preparation and Electrochemical Performances of Submicro-TiP2O7 Cathode for Lithium-Ion Batteries, Ionics, 2014, 20 (8), 1079-1085.

- G. Yee, S. Shanbhag, W. Wu, K. Carlisle, J. Chang, J.F. Whitacre, TiP2O7 Exhibiting Reversible Interaction with Sodium Ions in Aqueous Electrolytes, Electrochemistry Communications, 2018, 86, 104-107.

- C. Li, X. Sun, Q. Du, H. Zhang, Carbon-Coated TiP2O7 with Improved Cyclability in Aqueous Electrolytes, Solid State Ionics, 2013, 249–250, 72–77.

- V. Venckutė, P. Dobrovolskis, T. Šalkus, A. Kežionis, A. Dindune, Z. Kanepe, J. Ronis, K.Z. Fung, A.F. Orliukas, Preparation and Characterization of Solid Electrolytes Based on TiP2O7 Pyrophosphate, Ferroelectrics, 2015, 479 (1), 101-109.

- Y.N. Vaidyanath , K.G. Ashamanjari, K.R. Vishnu Mahesh, M. Mylarappa, M.S. Bhargava Ramu, S. C. Prashantha, H.P. Nagaswarupa,

N. Raghavendra , D.M.K. Siddeswara, Development and characterization of titanium phosphates (TiP2O7) and lithium titanium phosphate (LiTiP2O7) and their thermal and electric properties, Int J Adv Res., 2017, 5 (7), 917-925.

- Y. Sun, L. Gai, Y. Zhou, X. Zuo, J. Zhou, H. Jiang, Polyhierarchically Structured TiP2O7/C Microparticles with Enhanced Electrochemical Performance for Lithium-Ion Batteries, CrystEngComm., 2014, 16 (46), 10681-10691.

- C.C. Ribeiro, C.C. Barrias, M. A. Barbosa, Preparation and Characterisation of Calcium-Phosphate Porous Microspheres with a Uniform Size for Biomedical Applications, J Mater Sci: Mater Med, 2006, 17 (5), 455-463.

- I. C. Marcu, I. Sandulescu, J.M.M. Millet, Effects of the Method of Preparing Titanium Pyrophosphate Catalyst on the Structure and Catalytic Activity in Oxidative Dehydrogenation of N-Butane, Journal of Molecular Catalysis A: Chemical, 2003, 203 (1–2), 241–250.

- A. Salhi, A. Aarfane, S. Tahiri, L. Khamliche, M. Bensitel, S. Rafqah, N. Benzidia, M. El Krati, Préparation et évaluation de l’efficacité photocatalytique du Hydroxyapatite - Titane vis-à-vis du colorant Acide Orange 7 en milieu aqueux (Preparation and photocatalytic efficiency evaluation of Hydroxyapatite - Titanium toward Orange Acid 7 dye in aqueous medium), J Mater Environ Sci., 2014, 5 (5), 1573-1582.

- A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Highly Efficient Solvent-Free Synthesis of Quinazolin-4(3H)-ones and 2,3-Dihydroquinazolin-4(1H)-Ones Using Tetrabutylammonium Bromide as Novel Ionic Liquid Catalyst, Chinese Chemical Letters, 2010, 21 (5), 550–553.

- Z. Wang, Y. Tang, Mechanistic Insights into a Catalyst-Free Method to Construct Quinazolinones through Multiple Oxidative Cyclization, Tetrahedron, 2016, 72 (10),

–1336.

- J. Zhang, D. Ren, Y. Ma, W. Wang, H. Wu, CuO Nanoparticles Catalyzed Simple and Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-ones under Ultrasound Irradiation in Aqueous Ethanol, Tetrahedron, 2014, 70 (34), 5274–5282.

- L. Parashuram, S. Sreenivasa, S. Akshatha, V.U. Kumar, S. Kumar, Zirconia-Supported Cu(I)-Stabilized Copper Oxide Mesoporous Catalyst for the Synthesis of Quinazolinones Under Ambient Conditions, Asian J Org Chem., 2017, 6,1755–1759.

- J. Jadhav, S. Khanapure, R. Salunkhe, G. Rashinkar, Cp2ZrCl2-catalyzed Synthesis of 2-substituted Quinozolin-4(3H)-ones, Appl. Organometal. Chem., 2013, 27 (8), 486–488.

- D. Zhan, T. Li, X. Zhang, C. Dai, H. Wei, Y. Zhang, Q. Zeng, Vanadium-Catalyzed Synthesis of 4(3H)-Quinazolinones from Anthranilamides and Aryl Aldehydes, Synthetic Communications, 2013, 43 (18), 2493-2500.

- Z. Bie, G. Li, L. Wang, Y. Lv, J. Niu, S. Gao, A Facile Vanadium-Catalyzed Aerobic Oxidative Synthesis of Quinazolinones from

-Aminobenzamides with Aldehydes or Alcohols, Tetrahedron Letters, 2016, 57 (44), 4935-4938.

- K.M. Khan, S.M. Saad, N. N. Shaikh, S. Hussain, M.I. Fakhri, S. Perveen, M. Taha, M.I. Choudhary, Synthesis, and β-Glucuronidase Inhibitory Activity of 2-Arylquinazolin-4(3H)-ones, Bioorganic & Medicinal Chemistry, 2014, 22 (13), 3449–3454.




DOI: http://dx.doi.org/10.13171/mjc106020201368ym

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mediterranean Journal of Chemistry