Cover Image

Physical and mechanical properties of a tile produced with Burkina Faso clay

Moussa Ouedraogo, Issiaka Sanou, Halidou Bamogo, Zanga Fousseni Konaté, Richard Ouedraogo, Younoussa Millogo

Abstract


This study proposes an approach for manufacturing wall tiles from raw clayey material from Burkina Faso for use in the local ceramic industry. To this end, a clay sampled of Kodeni (KOD), primarily composed of kaolinite (62 wt.%), quartz (31 wt.%), and goethite (3 wt.%), with contents of 60.79 wt.% SiO₂ and 24.36 wt.% Al₂O₃ was used for wall tile manufacture. All the results of the physico-mechanical tests on the tiles developed at temperatures of 1150°C, 1200°C, and 1250°C show that these tiles meet the standards for mechanical strength of water absorption and thermal conductivity for ceramic applications. The formulation of the samples enriched with feldspar (25 wt.%) and fired achieved maximum flexural strengths of 22.58 MPa at 1250°C for the formulation containing no feldspar (F0) and 25.69 MPa at 1200°C for the formulation containing 25 wt.% feldspar (F1), confirming the densifying effect of feldspar at moderate temperatures. In addition, the water absorption and porosity of the tiles decreased progressively with increasing temperature, ensuring properties in line with ISO 13006 for wall use. The tiles also exhibited low thermal conductivity (≤ 1 W/(m.K)), limited and controllable linear shrinkage, and reduced deformation. These results suggest that KOD clay, amended with 25 wt.% feldspar at 1200°C temperature, is suitable for manufacturing wall tiles. Scanning electron microscopy analysis is planned to explore the evolution of the microstructure and viscous phase as a function of firing temperature to understand better the sintering processes and the interactions between the different stages.

Full Text:

PDF

References


- M. Seynou, Y. Millogo, R. Ouedraogo: White paste for stoneware tiles for pavement using raw clay material from Burkina Faso. Materials and structures, 2013. 46: pp. 755-763. DOI 10.1617/s11527-012-9932-0.

- M. Sawadogo, L. Zerbo, M. Seynou, B. Sorgho, R. Ouedraogo: Technological properties of raw clay-based ceramic tiles: influence of talc/proprietes technologiques de carreaux ceramiques a base d'argiles: influence d'un talc naturel. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 2014. 15 (3): p. 231.

- Y. Sawadogo, L. Zerbo, M. Sawadogo, M. Seynou, M. Gomina, P. Blanchart, Characterization and use of raw materials from Burkina Faso in porcelain formulations. Results in Materials, 6. 2020. 100085, https://doi.org/10.1016/j.rinma.2020.100085.

- K. Traoré, G.V.Ouedraogo, P. Blanchart, J-P. Jernot, M. Gomina, Influence of calcite on the microstructure and mechanical properties of pottery ceramics obtained from kaolinite-rich clay from Burkina Faso. Journal of the European Ceramic Society, 2007. 27: p. 1677-1681. https://doi.org/10.1016/j.jeurceramsoc.2006.04.147.

- A. Arib, A. Sarhiri, R. Moussa, T. Remmal, M. Gomina, Caractéristiques structurales et mécaniques de céramiques à base d’argiles : influence de la source de feldspath, C. R. Chimie 10. 2007. 502-510. https://doi.org/10.1016/j.crci.2006.01.005

- F. Lachibi, D. Aboutaleb, O. Zaidi, B. Safi. Using glass wastes and bentonite to produce a new ceramic tile. Materials and Geoenvironment, 2023, Vol. 69[3], pp. 1–14. http://dspace.univ-temouchent.edu.dz/handle/123456789/4240.

- O.R. Njindam, D. Njoya, JR. Mache, M. Mouafon, A. Messan, D. Njopwouo, Effect of glass powder on the technological properties and microstructure of clay mixture for porcelain stoneware tiles manufacture. Construction and Building Materials 170, 2018 512-519. https://doi.org/10.1016/j.conbuildmat.2018.03.069.

- H. Bamogo, M. Ouedraogo, I. Sanou, K.A.J. Ouedraogo, K. Dao, J.E. Aubert, Y. Millogo, Improvement of water resistance and thermal comfort of earth renders by cow dung: an ancestral practice of Burkina Faso. J. Cult. Herit. 46, 2020. pp 42–51. https://doi.org/10.1016/j.culher.2020.04.009.

- H. Bamogo, M. Ouedraogo, I. Sanou, J.-E. Aubert, Y. Millogo, Physical, hydric, thermal and mechanical properties of earth renders amended with dolomitic lime. Materials 15, 401. 2022. https://doi.org/10.3390/ma15114014.

- J. Yvon, P. Garin, J.F. Delon, J.M. Cases, Valorisation des argiles kaolini-tiques des Charentes dans le caoutchouc naturel, Bull. Minér. 105. 1982. p 431–437.

- H. Baccour, M. Medhioub, F. Jamoussi, T. Mhiri, Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. Journal of Materials Processing Technology, 2009. 209 (6): p. 2812-2817. https://doi.org/10.1016/j.jmatprotec.2008.06.055

- G. Fantozzi, J.C. Niepce, G. Bonnefont, J.A. Alary, B. Allard, A. Ayral, J. M.Bassat, C. Elissalde, M. Maglione, M. Beauvy, G. Bertrand, A. Bignon, D. Billieres, J. J. Blanc, P. Blumenfeld et al. Industrial ceramics: properties, forming, and applications; Les ceramiques industrielles: properties, mise en forme, et applications. France: N. p., 2013.

- A. Fortuna, D.M. Fortuna, E. Martini, An industrial approach to ceramics: sanitaryware. Plinius, 2017. 43: p. 138-145. DOI: 10.19276/plinius.2017.02019.

- H.E.B. El Idrissi, Caractérisation des argiles utilisées dans le secteur de la terre cuite de la région de Marrakech en vue d'améliorer la qualité des produits. Universite de Liege (Belgium) ProQuest Dissertations & Theses, 2017. 31351062.

- H. Boussak, H. Chemani, A. Serier, Characterization of porcelain tableware formulations containing bentonite clay. International Journal of Physical Sciences, 2015. 10 (1): p. 38-45. https://doi.org/10.5897/IJPS2014.4218.

- NF P 94-056; Sols: Reconnaissance et Essais—Analyse Granulométrique—Méthode par Tamisage à Sec Après Lavage. AFNOR: Paris, France, 1996.

- NF P 94-057, Sols: reconnaissance et essais-analyse granulométrique des sols-méthode par sedimentation, 1992.

- NF P 94-051; Sols: Reconnaissance et Essais—Détermination des Limites d’Atterberg—Limite de Liquidité à la Coupelle—Limite de Plasticité au Rouleau. AFNOR: Paris, France, 1993.

- AFNOR NF P 94-068. Sols: reconnaissance et essais. Détermination des limites d′Atterberg, 1993.

- Norme, ISO 10545-3. Ceramic Tiles. Part 3: Determination of Water Absorption, Apparent Porosity, Apparent Relative Density, and Bulk Density. 1 ed. 1995.

- M. Seynou, P. Flament, Y.T. Dah, J. Tirlocq, R. Ouedraogo., elaboration of refractory bricks with a raw clay material from Burkina Faso. Phys. Chem. News, 2014. 71: p. 68-75.

- M. Sawadogo, I. Sanou, Y. Dah, B. Traoré, Y. Sawadogo, D. Samaké, C. Dembelé, L. Zerbo, M. Seynou, Résistance aux chocs thermiques et aux attaques chimiques de briques réfractaires à base d’argile kaolinitique et de sable, J. Soc. Ouest-Afr. Chim. 2021 050, 50 – 56.

- Decagon. KD2 Pro Specifications, Decagon Inc., 2006.

- AFNOR, NF P 15-451, Flexion et compression, en Essais mécaniques, 1963.

- S. Fadil-Djenabou, P.-D. Ndjigui, J.A. Mbey, Mineralogical and physicochemical characterization of Ngaye alluvial clays (Northern Cameroon) and assessment of its suitability in ceramic production. Journal of Asian Ceramic Societies, 2015. 3 (1): p. 50-58. https://doi.org/10.1016/j.jascer.2014.10.008.

- H. Han, M.K. Rafiq, T. Zhou, R. Xu, O. Mašek, X. Li, A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials, 2019. 369: p. 780-796. https://doi.org/10.1016/j.jhazmat.2019.02.003.

- A. H. Rankin, M. F. Miller, J. S. Carter, The release of trace elements and volatiles from crinoidal limestone during thermal decrepitation. Mineralogical Magazine, 1987. 51 (362): p. 517-525. https://doi.org/10.1180/minmag.1987.051.362.06.

- K. Nahdi, N. Gasmi, M.T. Ayedi, N. Kbir-Ariguib, Characterization and thermal behavior of jebel ressas clay. Journal-Societe Chimique de Tunisie, 2001. 4 (9): p. 1125-1134.

- B. Semiz, Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia). Applied Clay Science, 2017. 137: p. 83-93. https://doi.org/10.1016/j.clay.2016.12.014.

- S. Monteiro, C. Vieira, Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 2004. 27 (3-4): p. 229-234. https://doi.org/10.1016/j.clay.2004.03.002.

- N. Phonphuak, S. Kanyakam, P. Chindaprasirt, Utilization of waste glass to enhance physical-mechanical properties of fired clay brick. Journal of Cleaner Production, 2016. 112: p. 3057-3062. https://doi.org/10.1016/j.jclepro.2015.10.084.

- B.K. Ngun, H. Mohamad, S.K. Sulaiman, K. Okada, Z.A. Ahmad, Some ceramic properties of clays from central Cambodia. Applied Clay Science, 2011. 53 (1): p. 33-41. https://doi.org/10.1016/j.clay.2011.04.017

- H. Celik, Technological characterization and industrial application of two Turkish clays for the ceramic industry. Applied Clay Science, 2010. 50 (2): p. 245-254. https://doi.org/10.1016/j.clay.2010.08.005.

- E. Garcia, A. De Pablos, M.A. Bengoechea, L. Guaita, M.I. Osendi, P. Miranzo, Thermal conductivity studies on ceramic floor tiles. Ceramics International, 2011. 37 (1): p. 369-375. https://doi.org/10.1016/j.ceramint.2010.09.023.

- F.A.C. Milheiro, M.N. Freire, A.G.P. Silva, J.N.F. Holanda, Densification behavior of a red-firing Brazilian kaolinitic clay. Ceramics International, 2005. 31 (5): p. 757-763. https://doi.org/10.1016/j.ceramint.2004.08.010.

- D. Lahcen, E. H. Elboudour, L. Saadi, A. Albizane, J. Bennazha, M. Waqif, M. Elouahabi, N. Fagel, Characteristics and ceramic properties of clayey materials from the Amezmiz region (Western High Atlas, Morocco). Applied Clay Science, 2014. 102: p. 139-147. https://doi.org/10.1016/j.clay.2014.09.029

- S. Ferrari, A. Gualtieri, The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 2006. 32 (1-2): p. 73-81. https://doi.org/10.1016/j.clay.2005.10.001.

- P. Blanchart, Les céramiques silicatées. Article Techniques de l’Ingénieur 7200038948 - Université de Limoges // 164.81.216.75, le 20 février 2015.

- S. Karaman, H. Gunal, S. Ersahin, Quantitative analysis of pumice effect on some physical and mechanical properties of clay bricks. J. Appl. Sci, 2008. 8 (7): p. 1340-1345.

- Q. Bao, W. Dong, J. Zhou, K. Liu, T. Zhao, Influence of calcite on the microstructure and sintering properties of the porcelain ceramic tiles at low temperature. Journal of the Ceramic Society of Japan, 2017. 125 (12): p. 881-886.

https://doi.org/10.2109/jcersj2.17105.

- K.A. Shariff, M.S. Juhari, L.W.L. Chan, S.R. Kasim, Effect of Different Firing Temperatures on Thermal Conductivity of Ceramic Tiles. Materials Science Forum, 1010. 2020. p. 665-671, https://doi.org/10.4028/www.scientific.net/MSF.1010.665.

- W. Ochen, F.M. D'ujanga, B. Oruru, P.W. Olupot, Physical and mechanical properties of porcelain tiles made from raw materials in Uganda. Results in Materials, 2021. 11: p. 100195. https://doi.org/10.1016/j.rinma.2021.100195.

- A. Zeollner, Some chemical and physical properties of porcelains. Sprechsaal, 1980. 41: p. 471-533.

- P. Pialy, Etude de quelques matériaux argileux du site de Lembo (Cameroun): minéralogie, comportement au frittage et analyse des propriétés d’élasticité. 2009, Limoges

- F. Pardo, M. Jordan, M. Montero, Ceramic behavior of clays in Central Chile. Applied Clay Science, 2018. 157: p. 158-164. https://doi.org/10.1016/j.clay.2018.02.044.




DOI: http://dx.doi.org/10.13171/mjc02501151818ouedraogo

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mediterranean Journal of Chemistry