Physical and mechanical properties of a tile produced with Burkina Faso clay
Abstract
Full Text:
PDFReferences
- M. Seynou, Y. Millogo, R. Ouedraogo: White paste for stoneware tiles for pavement using raw clay material from Burkina Faso. Materials and structures, 2013. 46: pp. 755-763. DOI 10.1617/s11527-012-9932-0.
- M. Sawadogo, L. Zerbo, M. Seynou, B. Sorgho, R. Ouedraogo: Technological properties of raw clay-based ceramic tiles: influence of talc/proprietes technologiques de carreaux ceramiques a base d'argiles: influence d'un talc naturel. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 2014. 15 (3): p. 231.
- Y. Sawadogo, L. Zerbo, M. Sawadogo, M. Seynou, M. Gomina, P. Blanchart, Characterization and use of raw materials from Burkina Faso in porcelain formulations. Results in Materials, 6. 2020. 100085, https://doi.org/10.1016/j.rinma.2020.100085.
- K. Traoré, G.V.Ouedraogo, P. Blanchart, J-P. Jernot, M. Gomina, Influence of calcite on the microstructure and mechanical properties of pottery ceramics obtained from kaolinite-rich clay from Burkina Faso. Journal of the European Ceramic Society, 2007. 27: p. 1677-1681. https://doi.org/10.1016/j.jeurceramsoc.2006.04.147.
- A. Arib, A. Sarhiri, R. Moussa, T. Remmal, M. Gomina, Caractéristiques structurales et mécaniques de céramiques à base d’argiles : influence de la source de feldspath, C. R. Chimie 10. 2007. 502-510. https://doi.org/10.1016/j.crci.2006.01.005
- F. Lachibi, D. Aboutaleb, O. Zaidi, B. Safi. Using glass wastes and bentonite to produce a new ceramic tile. Materials and Geoenvironment, 2023, Vol. 69[3], pp. 1–14. http://dspace.univ-temouchent.edu.dz/handle/123456789/4240.
- O.R. Njindam, D. Njoya, JR. Mache, M. Mouafon, A. Messan, D. Njopwouo, Effect of glass powder on the technological properties and microstructure of clay mixture for porcelain stoneware tiles manufacture. Construction and Building Materials 170, 2018 512-519. https://doi.org/10.1016/j.conbuildmat.2018.03.069.
- H. Bamogo, M. Ouedraogo, I. Sanou, K.A.J. Ouedraogo, K. Dao, J.E. Aubert, Y. Millogo, Improvement of water resistance and thermal comfort of earth renders by cow dung: an ancestral practice of Burkina Faso. J. Cult. Herit. 46, 2020. pp 42–51. https://doi.org/10.1016/j.culher.2020.04.009.
- H. Bamogo, M. Ouedraogo, I. Sanou, J.-E. Aubert, Y. Millogo, Physical, hydric, thermal and mechanical properties of earth renders amended with dolomitic lime. Materials 15, 401. 2022. https://doi.org/10.3390/ma15114014.
- J. Yvon, P. Garin, J.F. Delon, J.M. Cases, Valorisation des argiles kaolini-tiques des Charentes dans le caoutchouc naturel, Bull. Minér. 105. 1982. p 431–437.
- H. Baccour, M. Medhioub, F. Jamoussi, T. Mhiri, Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. Journal of Materials Processing Technology, 2009. 209 (6): p. 2812-2817. https://doi.org/10.1016/j.jmatprotec.2008.06.055
- G. Fantozzi, J.C. Niepce, G. Bonnefont, J.A. Alary, B. Allard, A. Ayral, J. M.Bassat, C. Elissalde, M. Maglione, M. Beauvy, G. Bertrand, A. Bignon, D. Billieres, J. J. Blanc, P. Blumenfeld et al. Industrial ceramics: properties, forming, and applications; Les ceramiques industrielles: properties, mise en forme, et applications. France: N. p., 2013.
- A. Fortuna, D.M. Fortuna, E. Martini, An industrial approach to ceramics: sanitaryware. Plinius, 2017. 43: p. 138-145. DOI: 10.19276/plinius.2017.02019.
- H.E.B. El Idrissi, Caractérisation des argiles utilisées dans le secteur de la terre cuite de la région de Marrakech en vue d'améliorer la qualité des produits. Universite de Liege (Belgium) ProQuest Dissertations & Theses, 2017. 31351062.
- H. Boussak, H. Chemani, A. Serier, Characterization of porcelain tableware formulations containing bentonite clay. International Journal of Physical Sciences, 2015. 10 (1): p. 38-45. https://doi.org/10.5897/IJPS2014.4218.
- NF P 94-056; Sols: Reconnaissance et Essais—Analyse Granulométrique—Méthode par Tamisage à Sec Après Lavage. AFNOR: Paris, France, 1996.
- NF P 94-057, Sols: reconnaissance et essais-analyse granulométrique des sols-méthode par sedimentation, 1992.
- NF P 94-051; Sols: Reconnaissance et Essais—Détermination des Limites d’Atterberg—Limite de Liquidité à la Coupelle—Limite de Plasticité au Rouleau. AFNOR: Paris, France, 1993.
- AFNOR NF P 94-068. Sols: reconnaissance et essais. Détermination des limites d′Atterberg, 1993.
- Norme, ISO 10545-3. Ceramic Tiles. Part 3: Determination of Water Absorption, Apparent Porosity, Apparent Relative Density, and Bulk Density. 1 ed. 1995.
- M. Seynou, P. Flament, Y.T. Dah, J. Tirlocq, R. Ouedraogo., elaboration of refractory bricks with a raw clay material from Burkina Faso. Phys. Chem. News, 2014. 71: p. 68-75.
- M. Sawadogo, I. Sanou, Y. Dah, B. Traoré, Y. Sawadogo, D. Samaké, C. Dembelé, L. Zerbo, M. Seynou, Résistance aux chocs thermiques et aux attaques chimiques de briques réfractaires à base d’argile kaolinitique et de sable, J. Soc. Ouest-Afr. Chim. 2021 050, 50 – 56.
- Decagon. KD2 Pro Specifications, Decagon Inc., 2006.
- AFNOR, NF P 15-451, Flexion et compression, en Essais mécaniques, 1963.
- S. Fadil-Djenabou, P.-D. Ndjigui, J.A. Mbey, Mineralogical and physicochemical characterization of Ngaye alluvial clays (Northern Cameroon) and assessment of its suitability in ceramic production. Journal of Asian Ceramic Societies, 2015. 3 (1): p. 50-58. https://doi.org/10.1016/j.jascer.2014.10.008.
- H. Han, M.K. Rafiq, T. Zhou, R. Xu, O. Mašek, X. Li, A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials, 2019. 369: p. 780-796. https://doi.org/10.1016/j.jhazmat.2019.02.003.
- A. H. Rankin, M. F. Miller, J. S. Carter, The release of trace elements and volatiles from crinoidal limestone during thermal decrepitation. Mineralogical Magazine, 1987. 51 (362): p. 517-525. https://doi.org/10.1180/minmag.1987.051.362.06.
- K. Nahdi, N. Gasmi, M.T. Ayedi, N. Kbir-Ariguib, Characterization and thermal behavior of jebel ressas clay. Journal-Societe Chimique de Tunisie, 2001. 4 (9): p. 1125-1134.
- B. Semiz, Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia). Applied Clay Science, 2017. 137: p. 83-93. https://doi.org/10.1016/j.clay.2016.12.014.
- S. Monteiro, C. Vieira, Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 2004. 27 (3-4): p. 229-234. https://doi.org/10.1016/j.clay.2004.03.002.
- N. Phonphuak, S. Kanyakam, P. Chindaprasirt, Utilization of waste glass to enhance physical-mechanical properties of fired clay brick. Journal of Cleaner Production, 2016. 112: p. 3057-3062. https://doi.org/10.1016/j.jclepro.2015.10.084.
- B.K. Ngun, H. Mohamad, S.K. Sulaiman, K. Okada, Z.A. Ahmad, Some ceramic properties of clays from central Cambodia. Applied Clay Science, 2011. 53 (1): p. 33-41. https://doi.org/10.1016/j.clay.2011.04.017
- H. Celik, Technological characterization and industrial application of two Turkish clays for the ceramic industry. Applied Clay Science, 2010. 50 (2): p. 245-254. https://doi.org/10.1016/j.clay.2010.08.005.
- E. Garcia, A. De Pablos, M.A. Bengoechea, L. Guaita, M.I. Osendi, P. Miranzo, Thermal conductivity studies on ceramic floor tiles. Ceramics International, 2011. 37 (1): p. 369-375. https://doi.org/10.1016/j.ceramint.2010.09.023.
- F.A.C. Milheiro, M.N. Freire, A.G.P. Silva, J.N.F. Holanda, Densification behavior of a red-firing Brazilian kaolinitic clay. Ceramics International, 2005. 31 (5): p. 757-763. https://doi.org/10.1016/j.ceramint.2004.08.010.
- D. Lahcen, E. H. Elboudour, L. Saadi, A. Albizane, J. Bennazha, M. Waqif, M. Elouahabi, N. Fagel, Characteristics and ceramic properties of clayey materials from the Amezmiz region (Western High Atlas, Morocco). Applied Clay Science, 2014. 102: p. 139-147. https://doi.org/10.1016/j.clay.2014.09.029
- S. Ferrari, A. Gualtieri, The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 2006. 32 (1-2): p. 73-81. https://doi.org/10.1016/j.clay.2005.10.001.
- P. Blanchart, Les céramiques silicatées. Article Techniques de l’Ingénieur 7200038948 - Université de Limoges // 164.81.216.75, le 20 février 2015.
- S. Karaman, H. Gunal, S. Ersahin, Quantitative analysis of pumice effect on some physical and mechanical properties of clay bricks. J. Appl. Sci, 2008. 8 (7): p. 1340-1345.
- Q. Bao, W. Dong, J. Zhou, K. Liu, T. Zhao, Influence of calcite on the microstructure and sintering properties of the porcelain ceramic tiles at low temperature. Journal of the Ceramic Society of Japan, 2017. 125 (12): p. 881-886.
https://doi.org/10.2109/jcersj2.17105.
- K.A. Shariff, M.S. Juhari, L.W.L. Chan, S.R. Kasim, Effect of Different Firing Temperatures on Thermal Conductivity of Ceramic Tiles. Materials Science Forum, 1010. 2020. p. 665-671, https://doi.org/10.4028/www.scientific.net/MSF.1010.665.
- W. Ochen, F.M. D'ujanga, B. Oruru, P.W. Olupot, Physical and mechanical properties of porcelain tiles made from raw materials in Uganda. Results in Materials, 2021. 11: p. 100195. https://doi.org/10.1016/j.rinma.2021.100195.
- A. Zeollner, Some chemical and physical properties of porcelains. Sprechsaal, 1980. 41: p. 471-533.
- P. Pialy, Etude de quelques matériaux argileux du site de Lembo (Cameroun): minéralogie, comportement au frittage et analyse des propriétés d’élasticité. 2009, Limoges
- F. Pardo, M. Jordan, M. Montero, Ceramic behavior of clays in Central Chile. Applied Clay Science, 2018. 157: p. 158-164. https://doi.org/10.1016/j.clay.2018.02.044.
DOI: http://dx.doi.org/10.13171/mjc02501151818ouedraogo
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mediterranean Journal of Chemistry