Cover Image

Role of activated carbon on micropollutans degradation by different radiation processes

Inmaculada Velo Gala, Jesús J. López Peñalver, Manuel Sánchez Polo, Jose Rivera Utrilla

Abstract


The objective of this study was to analyse the influence of the presence of activated carbon on radiation processes. The triiodinated contrast medium diatrizoate was chosen as the contaminant model. We selected four commercial activated carbons and sixteen gamma radiation-modified carbons derived from these. The different advanced oxidation/reduction processes that have been studied were improved through the addition of activated carbon in the UV light and gamma radiating processes. In the UV/activated carbon process, the synergic activity of the activated carbon is enhanced in the samples with higher percentages of surface oxygen, ester/anhydride groups and carbon atoms with sp2 hybridization. Band gap determination of activated carbons revealed that they behave as semiconductor materials and, therefore, as photoactive materials in the presence of UV radiation, given that all band gap values are <4 eV. We also observed that the gamma radiation treatment reduces the band gap values of the activated carbons and that, in a single series of commercial carbons, lower band gap values correspond to higher contaminant removal rate values. We observed that the activity of the reutilized activated carbons is similar to that of the original carbons. Based on these results, we proposed that the activated carbon acts as a photocatalyst, promoting electrons of the valence band to the conduction band and increasing the generation of HO• radicals in the medium. Similarly, there was a synergic effect made by the presence of activated carbon in gamma radiation system, which favours pollutant removal. This synergic effect is independent of the textural but not the chemical characteristics of the activated carbon, observing a higher synergic activity for carbons with a higher surface content of oxygen, specifically quinone groups. We highlight that the synergic effect of the activated carbon requires adsorbent–adsorbate electrostatic interaction and is absent when this interaction is hindered.

 

Full Text:

PDF

References


P. J. M. Carrott, M. M. L. R. Carrott and R. A. Roberts. Physical adsorption of gases by microporous carbons. Colloids Surf. 1991, 58, 385-400.

J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manage. 2007, 85, 833-846.

K. Y. Foo and B. H. Hameed. Detoxification of pesticide waste via activated carbon adsorption process. J. Hazard. Mater. 2010, 175, 1-11.

C. Gabaldón, P. Marzal, A. Seco and J. A. Gonzalez. Cadmium and Copper Removal by a Granular Activated Carbon in Laboratory Column Systems. Sep. Sci. Technol. 2000, 35, 1039-1053.

J.-y. Hu, T. Aizawa, Y. Ookubo, T. Morita and Y. Magara. Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon. Water Res. 1998, 32, 2593-2600.

A. N. Malhas, R. A. Abuknesha and R. G. Price. Removal of detergents from protein extracts using activated charcoal prior to immunological analysis. J. Immunol. Methods 2002, 264, 37-43.

G. San Miguel, G. D. Fowler and C. J. Sollars. Adsorption of organic compounds from solution by activated carbons produced from waste tyre rubber. Sep. Sci. Technol. 2002, 37, 663-676.

K. Urano, E. Yamamoto, M. Tonegawa and K. Fujie. Adsorption of chlorinated organic compounds on activated carbon from water. Water Res. 1991, 25, 1459-1464.

G. M. Walker and L. R. Weatherley. Kinetics of acid dye adsorption on GAC. Water Res. 1999, 33, 1895-1899.

C. Moreno-Castilla and J. Rivera-Utrilla. Carbon materials as adsorbents for the removal of pollutants from the aqueous phase. MRS Bull. 2001, 26, 890-894.

F. Blanco, X. Vilanova, V. Fierro, A. Celzard, P. Ivanov, E. Llobet, N. Cañellas, J. L. Ramírez and X. Correig. Fabrication and characterisation of microporous activated carbon-based pre-concentrators for benzene vapours. Sens. Actuators, B 2008, 132, 90-98.

D. Montané, D. Nabarlatz, A. Martorell, V. Torné-Fernández and V. Fierro. Removal of Lignin and Associated Impurities from Xylo-oligosaccharides by Activated Carbon Adsorption. Ind. Eng. Chem. Res. 2006, 45, 2294-2302.

K. Okada, N. Yamamoto, Y. Kameshima and A. Yasumori. Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. J. Colloid Interface Sci. 2003, 262, 194-199.

J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P. M. Ãlvarez, M. C. M. Alvim-Ferraz and J. M. Dias. Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 2011, 187, 1-23.

X. Li, Q. Zhang, L. Tang, P. Lu, F. Sun and L. Li. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke. J. Hazard. Mater. 2009, 163, 115-120.

T. Merle, J. S. Pic, M. H. Manero, S. Mathé and H. Debellefontaine. Influence of activated carbons on the kinetics and mechanisms of aromatic molecules ozonation. Catal. Today 2010, 151, 166-172.

J. Rivera-Utrilla and M. Sánchez-Polo. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Appl. Catal., B 2002, 39, 319-329.

M. Sánchez-Polo and J. Rivera-Utrilla. Effect of the ozone–carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon 2003, 41, 303-307.

Y.-Z. Zhang, X.-Y. Xiong, Y. Han and W. Zhou. Comparison of catalysis of different activated carbon in pulsed discharge reactor. Proc. Environ. Sci. 2011, 11, Part B, 668-673.

M. H. Baek, W. C. Jung, J. W. Yoon, J. S. Hong, Y. S. Lee and J. K. Suh. Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon. J. Ind. Eng. Chem. 2013, 19, 469-477.

H. Choi, E. Stathatos and D. D. Dionysiou. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl. Catal., B 2006, 63, 60-67.

T. Cordero, C. Duchamp, J. M. Chovelon, C. Ferronato and J. Matos. Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation. J. Photochem. Photobiol., A 2007, 191, 122-131.

G. Li Puma, A. Bono, D. Krishnaiah and J. G. Collin. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209-219.

T. T. Lim, P. S. Yap, M. Srinivasan and A. G. Fane. TiO 2/AC composites for synergistic adsorption-photocatalysis processes: Present challenges and further developments for water treatment and reclamation. Crit. Rev. Env. Sci. Technol. 2011, 41, 1173-1230.

J. Matos, A. Garcia, T. Cordero, J. M. Chovelon and C. Ferronato. Eco-friendly TiO 2-AC photocatalyst for the selective photooxidation of 4-chlorophenol. Catal. Lett. 2009, 130, 568-574.

J. Rivera-Utrilla, M. Sánchez-Polo, M. M. Abdel Daiem and R. Ocampo-Pérez. Role of activated carbon in the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid by the UV/TiO 2/activated carbon system. Appl. Catal., B 2012, 126, 100-107.

J. L. Figueiredo and M. F. R. Pereira. The role of surface chemistry in catalysis with carbons. Catal. Today 2010, 150, 2-7.

F. Rodríguez-reinoso. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159-175.

W. Wang, C. G. Silva and J. L. Faria. Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl. Catal., B 2007, 70, 470-478.

M. Haro, L. F. Velasco and C. O. Ania. Carbon-mediated photoinduced reactions as a key factor in the photocatalytic performance of C/TiO 2. Catal. Sci. Technol. 2012, 2, 2264-2272.

L. F. Velasco, I. M. Fonseca, J. B. Parra, J. C. Lima and C. O. Ania. Photochemical behaviour of activated carbons under UV irradiation. Carbon 2012, 50, 249-258.

L. F. Velasco, V. Maurino, E. Laurenti, I. M. Fonseca, J. C. Lima and C. O. Ania. Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Appl. Catal., A 2013, 452, 1-8.

I. Velo-Gala, J. J. López-Peñalver, M. Sánchez-Polo and J. Rivera-Utrilla. Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal., B 2013, 142–143, 694-704.

S. P. Mezyk and D. M. Bartels. Temperature dependence of hydrogen atom reaction with nitrate and nitrite species in aqueous solution. J. Phys. Chem. A 1997, 101, 6233-6237.

I. A. E. A. IAEA. Status of industrial scale radiation treatment of wastewater and its future. (2004).

I. A. E. A. IAEA. Nuclear technology review. (2004).

I. A. E. A. IAEA. Radiation Processing: Environmental Applications. (2007).

I. A. E. A. IAEA. Radiation treatment of polluted water and wastewater. (2008).

C. G. Daughton and T. A. Ternes. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907-938.

K. Kümmerer. The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. J. Environ. Manage. 2009, 90, 2354-2366.

C. Abegglen, A. Joss, C. S. McArdell, G. Fink, M. P. Schlüsener, T. A. Ternes and H. Siegrist. The fate of selected micropollutants in a single-house MBR. Water Res. 2009, 43, 2036-2046.

O. A. H. Jones, N. Voulvoulis and J. N. Lester. Human pharmaceuticals in wastewater treatment processes. Crit. Rev. Env. Sci. Technol. 2005, 35, 401-427.

T. Ternes. Pharmaceuticals and metabolites as contaminants of the aquatic environment - An overview. Prepr. Ext. Abstr. ACS Natl. Meet., Am. Chem. Soc., Div. 2000, 40, 98-100.

M. Carballa, F. Omil, J. M. Lema, M. a. Llompart, C. GarcıÌa-Jares, I. RodrıÌguez, M. Gómez and T. Ternes. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38, 2918-2926.

J. E. Drewes, P. Fox and M. Jekel. Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2001, 36, 1633-1645.

L. J. Fono, E. P. Kolodziej and D. L. Sedlak. Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ. Sci. Technol. 2006, 40, 7257-7262.

A. Putschew, S. Wischnack and M. Jekel. Occurrence of triiodinated X-ray contrast agents in the aquatic environment. Sci. Total Environ. 2000, 255, 129-134.

W. Seitz, W. H. Weber, J. Q. Jiang, B. J. Lloyd, M. Maier, D. Maier and W. Schulz. Monitoring of iodinated X-ray contrast media in surface water. Chemosphere 2006, 64, 1318-1324.

T. Heberer. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5-17.

W. Kalsch. Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci. Total Environ. 1999, 225, 143-153.

A. Haiß and K. Kümmerer. Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms. Chemosphere 2006, 62, 294-302.

S. Pérez and D. Barceló. Fate and occurrence of X-ray contrast media in the environment. Anal. Bioanal. Chem. 2007, 387, 1235-1246.

M. M. Huber, A. Göbel, A. Joss, N. Hermann, D. Löffler, C. S. McArdell, A. Ried, H. Siegrist, T. A. Ternes and U. Von Gunten. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environ. Sci. Technol. 2005, 39, 4290-4299.

T. A. Ternes, J. Stüber, N. Herrmann, D. McDowell, A. Ried, M. Kampmann and B. Teiser. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 2003, 37, 1976-1982.

I. Velo-Gala, J. J. López-Peñalver, M. Sánchez-Polo and J. Rivera-Utrilla. Surface modifications of activated carbon by gamma irradiation. Carbon 2014, 67, 236-249.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin and N. M. D. Brown. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153-161.

J. Parmentier, S. Schlienger, M. Dubois, E. Disa, F. Masin and T. A. Centeno. Structural/textural properties and water reactivity of fluorinated activated carbons. Carbon 2012, 50, 5135-5147.

P. H. Wang, K. L. Hong and Q. R. Zhu. Surface analyses of polyacrylonitrile-based activated carbon fibers by X-ray photoelectron spectroscopy. J. Appl. Polym. Sci. 1996, 62, 1987-1991.

D. A. Shirley. High-Resolution X-Ray Photoemission Spectrum of Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709-&.

M. A. Fraga, M. J. Mendes and E. Jordão. Examination of the surface chemistry of activated carbon on enantioselective hydrogenation of methyl pyruvate over Pt/C catalysts. J. Mol. Catal. A: Chem. 2002, 179, 243-251.

H. Guedidi, L. Reinert, J.-M. Lévêque, Y. Soneda, N. Bellakhal and L. Duclaux. The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon 2013, 54, 432-443.

C. Moreno-Castilla, M. V. Lopez-Ramon and F. Carrasco-Marin. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 2000, 38, 1995-2001.

F. Vautard, S. Ozcan, F. Paulauskas, J. E. Spruiell, H. Meyer and M. J. Lance. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment. Appl. Surf. Sci. 2012, 261, 473-480.

J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai and W.-K. Yuan. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007, 45, 785-796.

S. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk and H. A. Andreas. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 2010, 48, 1252-1261.

A. M. Oickle, S. L. Goertzen, K. R. Hopper, Y. O. Abdalla and H. A. Andreas. Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon 2010, 48, 3313-3322.

S. Brunauer, P. H. Emmett and E. Teller. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309-319.

B. C. Lippens and J. H. de Boer. Studies on pore systems in catalysts: V. The t method. J. Catal. 1965, 4, 319-323.

D. Cazorla-Amorós, J. Alcañiz-Monge, M. A. de la Casa-Lillo and A. Linares-Solano. CO2 As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons. Langmuir 1998, 14, 4589-4596.

E. Atinault, V. De Waele, U. Schmidhammer, M. Fattahi and M. Mostafavi. Scavenging of and OH radicals in concentrated HCl and NaCl aqueous solutions. Chem. Phys. Lett. 2008, 460, 461-465.

G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO•/O•−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 2593-2600.

B. G. Ershov, M. Kelm, A. V. Gordeevb and E. Janata. A pulse radiolysis study of the oxidation of Br- by Cl2 •- in aqueous solution: Formation and properties of ClBr•. Phys. Chem. Chem. Phys. 2002, 4, 1872-1875.

J. A. LaVerne, M. R. Ryan and T. Mu. Hydrogen production in the radiolysis of bromide solutions. Radiat. Phys. Chem. 2009, 78, 1148-1152.

O. Roth and J. A. Laverne. Effect of pH on H 2O 2 production in the radiolysis of water. J. Phys. Chem. A 2011, 115, 700-708.

P. Kubelka. New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. Am. 1948, 38, 448-457.

P. Kubelka and F. Munk. Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. (Leipzig) 1931, 593-601.

R. López and R. Gómez. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO 2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1-7.

H. P. Boehm. Free radicals and graphite. Carbon 2012, 50, 3154-3157.

B. Campbell and A. Mainwood. Radiation Damage of Diamond by Electron and Gamma Irradiation. Phys. Status Solidi A 2000, 181, 99-107.

B. G. Ershov and A. V. Gordeev. A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiat. Phys. Chem. 2008, 77, 928-935.

J. M. Joseph, B. Seon Choi, P. Yakabuskie and J. Clara Wren. A combined experimental and model analysis on the effect of pH and O2(aq) on γ-radiolytically produced H2 and H2O2. Radiat. Phys. Chem. 2008, 77, 1009-1020.

R. Laenen, T. Roth and A. Laubereau. Novel Precursors of Solvated Electrons in Water: Evidence for a Charge Transfer Process. Phys. Rev. Lett. 2000, 85, 50-53.

D. Swiatla-Wojcik and G. V. Buxton. Modelling of linear energy transfer effects on track core processes in the radiolysis of water up to 300[degree]C. J. Chem. Soc., Faraday Trans. 1998, 94, 2135-2141.

E. A. Voudrias, R. A. Larson and V. L. Snoeyink. Importance of surface free radicals in the reactivity of granular activated carbon under water treatment conditions. Carbon 1987, 25, 503-515.

I. Velo-Gala, J. J. López-Peñalver, M. Sánchez-Polo and J. Rivera-Utrilla. Ionic X-ray contrast media degradation in aqueous solution induced by gamma radiation. Chem. Eng. J. 2012, 195–196, 369-376.

R. W. Coughlin and F. S. Ezra. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ. Sci. Technol. 1968, 2, 291-297.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Mediterranean Journal of Chemistry