A review of nanostructured thin films for gas sensing and corrosion protection
Abstract
Thin film technology is getting huge attention across the world due to its wide applications. Deposition of thin films involves creation, transportation and condensation of target materials with thickness varying from few nanometers to several microns onto the substrate. This review will highlight thin film depositing techniques which consist of non-vacuum and vacuum based deposition method. Besides this, thin films and their applications in gas sensing and corrosion protection have also been discussed.
Full Text:
PDFReferences
- Park J, Kim T, Denis S, Lee J, An S, Pyo Y, Lee D, Mo Y, Jin D, Chung H (2009) Flexible full color organic light emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin film transistors. Applied Physics Letters, https://doi.org/10.1063/1.3159832.
- Jung WL, Jun D, Heo J, Jae SY (2013) Single material zinc sulfide bi-layer antireflection coatings for GaSa solar cells. Optics Express, 21, DOI:10.1364/OE.21.00A821.
- Naoya T, So N, Hajime I, Yoshimi H, Saburo (2012) Magnetic shielding simulation of superconducting film magnetic shield covering directly coupled HTS dc-SQUID magnetometer. Physics Procedia, 36, 138- 143.
- Mark HK (1992) Magnetic thin films for data storage. Thin Solid Films, 216, 174-180.
- Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X (2013) VO thermochromic’ smart window for energy savings and generation. Scientific Reports, DOI:10.1038/srep03029.
- Ho SM, Anand TJS (2015) A review of chalcogenide thin films for solar cell applications. Indian Journal of Science and Technology, 8, DOI: 10.17485/ijst/2015/v8i12/67499.
- Ho SM (2016) A brief review of the polymer thin film solar cells. International Journal of Scientific Research in Science, Engineering and Technology, 2, 1-5.
- Ho SM (2016) Power conversion efficiency in thin film solar cell: a review. International Journal of Chemical Sciences, 14, 143-151.
- Ali N, Hussain A, Ahmed R, Wang MK, Zhao C, Haq BU, Fu YQ (2016) Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 59, 726-737.
- Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges, Renewable and Sustainable Energy Reviews, 70, 1286-1297.
- Eliaz N, Shemesh G, Latanision RM (2002) Hot corrosion in gas turbine components. Engineering Failure Analysis, 9, 31-43.
- Sivakumar R, Mordike BL (1989) High-temperature coatings for gas turbine blades: A review. Surface and Coatings Technology, 37, 139-160.
- Sam Z, Deen S, Fu Y, Du H (2003) Recent advances of superhard nanocomposite coatings:
a review. Surface and Coatings Technology, 167, 113-119.
- Ruby D, Suman P (2011) Comparison of optical properties of bulk and nano crystalline thin films of CdS using different precursors. International Journal of Material Science, 1, 35-40.
- William DN (1989) Mechanical properties of thin films. Metallurgical Transactions A, 20, https://doi.org/10.1007/BF02666659.
- Zollner SZ, Demkov AA, Liu R, Fejes PL, Gregory RB, Alluri P (2000) Optical properties of bulk and thin film SrTiO3 on Si and Pt. Journal of Vaccum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement and Phenomena, 18, https://doi.org/10.1116/1.1303741.
- K. Benyahia, A. Benhaya, M.S. Aida, ZnS thin films deposition by thermal evaporation for photovoltaic applications, Journal of Semiconductors, 2015, https://doi.org/10.1088/16744926/36/10/103001
- M. Nafiseh, M.R. Seyeed, C. Isabella, V. Alberto, Deposition of nanostructured CdS thin films by thermal evaporation method: effect of substrate temperature, Materials (Basel), 2017, doi: 10.3390/ma10070773.
- B.M.S. Sahuban, R. Chandramohan, T.A. Vijayan, K.S. Saravana, K.S.R. Sri, M. Jayachandran, A. Ayeshamariam, Effect of temperature of electron beam evaporated CdSe thin films, Journal of Material Sciences & Engineering, 2016, DOI: 10.4172/2169-0022.1000297.
- M.K. Jason, M.G. Russell, W.S. Sampath, Optimization of CdTe thin film solar cell efficiency usi8ng a sputtered, oxygenated CdS window layer, Progress in Photovoltaic, 2015, https://doi.org/10.1002/pip.2578.
- K. Anuar, S.M. Ho, S. Atan, H. Jelas, N. Saravanan, Chemical bath deposition of SnS thin films: AFM, EDAX and UV-Visible characterization, Oriental Journal of Chemistry, 2011, 27, 1375-1381.
- M.J. Haron, N. Saravanan, K. Anuar, S.M. Ho, W.T. Tan, S. Atan, Z. Kuang, Effect of deposition period and bath temperature on the properties of electrodeposited Cu4SnS4 films, Solid State Science and Technology, 2009, 17, 226-237.
- S.M. Ho, Influence of complexing agent on the growth of chemically deposited Ni3Pb2S2 thin
films, Oriental Journal of Chemistry, 2014, 30, 1009-1012.
- K. Anuar, S.M. Ho, K.S. Lim, N. Saravanan, SEM, EDAX and UV-Visible studies on the properties of Cu2S thin films, Chalcogenide Letters, 2011, 8, 405-410.
- N. Memarian, S. Rozati, I. Concina, A. Vomiero, Deposition of Nanostructured CdS Thin Films by Thermal Evaporation Method: Effect of Substrate Temperature, Materials, 2017, 10, 773-781.
- T. Daniel, K. Mohanraj, G. Sivakumar, Effect of annealing temperature on thermally evaporated Cu3SbS3 thin films, Journal of Materials Science: Materials in Electronics, 2018, 29, 9251-9257.
- S. Jung, S. Ahn, J.H. Yun, J. Gwak, D. Kim, K. Yoon, Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique, Current Applied Physics, 2010, 10, 990-996.
- V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, T. Buonassisi, 3.88 % Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation, Advanced Materials, 2014, 26, 7488-7492.
- Y. Xu, W. Sun, X. Xiong, Z. Peng, Y. Chen, Z. Hao, Microstructure and properties of ZrC-SiC multi-phase coatings prepared by thermal evaporation deposition and an in-situ reaction method, Surface and Coatings Technology, 2018, 349, 797-806.
- E.D. McClanahan, N. Laegreid, 1991, Production of thin films by controlled
deposition of sputtered material. In: Behrisch R. Wittmaack K. (eds). Sputtering by Particle Bombardment III. Topics in Applied Physics, Springer, Berlin, Heidelberg, 64, 339-377.
- O.P. Singh, R. Parmar, K.S. Gour, J.S. Tawale, S.P. Singh, V.N. Singh, Synthesis and characterization of petal type CZTS by stacked layer reactive sputtering, Superlattices and Microstructures, 2015, 88, 281-286.
- S. Siol, T.P. Dhakal, G.S. Gudavalli, P.P. Rajbhandari, C. DeHart, L.L. Baranowski, A. Zakutayev, Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells, ACS Applied Materials & Interfaces, 2016, 8, 14004-14011.
- K.S. Gour, A.K. Yadav, O.P. Singh, V.N. Singh, Na incorporated improved properties of Cu2ZnSnS4 (CZTS) thin film by DC sputtering, Vacuum, 2018, 154, 148-153.
- K.S. Gour, R. Parmar, O.P. Singh, V.N. Singh, Optimizing CuInGaSe2 Thin Films Grown by Selenization of CuIn/CuGa Multilayers for Solar Cell Applications, Advanced Science, Engineering and Medicine, 2016, 8, 314-318.
- T.C. Gorjanc, D. Leong, C. Py, D. Roth, Room temperature deposition of ITO using R.F.
magnetron sputtering, Thin Solid Films, 2002, 413, 181-185.
- J.H. Choi, A.A. Garay, S.M. Hwang, C.W. Chung, Influence of oxygen on characteristics of Zn(O, S) thin films deposited by RF magnetron sputtering, Journal of Vacuum Science & Technology A, 2015, 33, 040603.
- K.S. Gour, O.P. Singh, A.K. Yadav, R. Parmar, V.N. Singh, Effect of NaF evaporation on morphological and structural properties of Cu2ZnSnSe4 (CZTSe) thin film deposited by sputtering from a single compound target, Journal of Alloys and Compounds, 2017, 718, 231-235.
- K.S. Gour, O.P. Singh, B. Parmar, R. Husale, S. Senguttuvan, V.N. Singh, Enhanced photoresponse of Cu2ZnSn(S, Se)4 based photodetector in visible range, Journal of Alloys and Compounds, 2016, 694, 119-123.
- J.A. Obeng, G.L. Schrader, Reactive sputtering of molybdenum sulfide thin films, Surface and Coatings Technology, 1994, 68, 422-426.
- K.S. Gour, B. Bhattacharyya, O.P. Singh, A.K. Yadav, S. Husale, V.N. Singh, Nanostructured Cu2ZnSnS4 (CZTS) thin film for self-powered broadband photodetection, Journal of Alloys and Compounds, 2018, 735, 285-290.
- K.S. Gour, A. Yadav, R. Kumar, J.S. Tawale. V.V. Singh, Effect of Sulfurization Temperature on Optical and Compositional Properties of Sputtered Zn(O, S) Thin Films, Advanced Materials Letters, 2018, 9, 811-815.
- K.S. Gour, O.P. Singh, J.S. Tawale, V.V. Singh, Silver (Ag) incorporated Cu2ZnSnS4 thin film for improved optical and morphological properties, Superlattices and Microstructures, 2018, 120, 54-59.
- H.F. Huq, R.Y. Garza, R.G. Perez, Characteristics of GaN Thin Films Using Magnetron Sputtering System, Journal of Modern Physics, 2016, 7, 2028-2037.
- O.P. Singh, K.S. Gour, R. Parmar, V.V. Singh, Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu2ZnSnS4 thin film solar cell, Materials Chemistry and Physics, 2016, 177, 293-298.
- O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range, Solar Energy Materials & Solar Cells, 2016, 157, 28-34.
- J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao, X. Liang, Epitaxial growth of ZnO thin films on Si substrates by PLD technique, Journal of Crystal Growth, 2005, 280, 455-461.
- Y. Zeng, Y. Zhao, Y. Jiang, ZnO thin films prepared on titanium substrate by PLD technique at different substrate temperatures, Surface and Interface Analysis, 2014, 46, 602-606.
- M. Han, J. Jia, W. Wang, Pulsed laser deposition of a Bi2S3/CuInS2/TiO2 cascade structure for high photoelectrochemical performance, RSC Advances, 2016, 6, 70952-70959.
- T. Yamaki, T. Sumita, S. Yamamo, A. Miyashita, Preparation of epitaxial TiO2 films by PLD for photocatalyst applications, Journal of Crystal Growth, 2002, 237, 574-579.
- M. Kotani, H. Miura, Y. Shim, K. Wakita, Composition-ratio control of CZTS ï¬lms deposited by PLD, Physica Status Solidi C, 2017, 14, 1600212-1600216.
- M.H. Rashid, J. Rabeya, M. Doha, O. Islam, P. Reith, G. Hopman, H. Hilgenkamp, Characterization of Single Step Electrodeposited Cu2ZnSnS4 Thin Films, Journal of Optics, 2018, 47, 256-262.
- S.M. Pawar, B. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S. Kolekar, J.H. Kim, Single Step Electrosynthesis of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Application, Electrochimica Acta, 2010, 55, 4057-4061.
- F. Jiang, S. Li, C. Ozaki, T. Harada, S. Ikeda, Coâ€Electrodeposited Cu2ZnSnS4 Thin Film Solar Cell and Cu2ZnSnS4 Solar Cell – BiVO4 Tandem Device for Unbiased Solar Water Splitting. RRL Solar RRL, 2018, 2, https://doi.org/10.1002/solr.201700205.
- B.P. Relekar, S.A. Mahadik, S. Jadhav, A.S. Patil, R.R. Koli, G.M. Lohar, V.J. Fulari, Effect of Electrodeposition Potential on Surface Free Energy and Supercapacitance of MnO2 Thin Films, Journal of Electronic Materials, 2018, 47, 2731-2738.
- K. Premnath, J. Theerthagiri, J. Madhavan, P. Arunachalam, M.A. Ghanem, M. A. Al-Mayouf, Electrodeposited Co1-xMoxS Thin Films as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Acid Medium, Journal of Solid State Electrochemistry, 2018, 22, 2641-2647.
- S. Thomas, J. Mallet, H. Rinnert, M. Molinari, Single Step Electrodeposition Process Using Ionic Liquid to Grow Highly Luminescent Silicon/Rare Earth (Er, Tb) Thin Films with Tunable Composition, RSC Advances, 2018, 8, 3789-3797.
- Y. Zhang, D.G. Ivey, Electrodeposition of Nanocrystalline CoFe Soft Magnetic Thin Films from Citrate-Stabilized Baths, Materials Chemistry and Physics, 2018, 204, 171-178.
- F.F. Xia, W.C. Jia, C.Y. Ma, R. Yang, Y. Wang, M. Potts, Synthesis and Characterization of Ni-Doped TiN Thin Films Deposited by Jet Electrodeposition, Applied Surface Science, 2018, 434, 228-233.
- B. Altiokka, A.K. Yildirim, Electrodeposition of CdS Thin Films at Various pH Values, Journal of the Korean Physical Society, 2018, 72, 687-691.
- L. Jiang, J. Chen, Y. Wang, K. Sun, F. Liu, Y. Lai, Graphene-Sb2Se3 Thin Films Photoelectrode Synthesized by in Situ Electrodeposition, Materials Letters, 2018, 224, 109-112.
- J.B. Thorat, S.V. Mohite, A.A. Bagade, T.J. Shinde, V.J. Fulari, K.Y. Rajpure, N.S. Shinde, Nanocrystalline Bi2Te3 thin films synthesized by electrodeposition method for photoelectrochemical application, Materials Science in Semiconductor Processing, 2018, 79, 119-126.
- W. Zhang, Y. Wu, J. Qi, M. Chen, R. Cao, A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Signiï¬cantly Improved Catalytic Water Oxidation Efï¬ciency, Advanced Energy Materials, 2017, 7, https://doi.org/10.1002/aenm.201602547
- C. Devi, R.A. Kumar, E.R. Kumar, Effects of Heat Treatment on Structural, Optical and
Magnetic Properties of Electro Deposited Fe–Ni–P Thin Films, Journal of Inorganic and
Organometallic Polymers and Materials, 2018, 28, 1787-1792.
- S. Mahato, A.K. Kar, The effect of annealing on structural, optical and photosensitive properties of electrodeposited cadmium selenide thin films, Journal of Science: Advanced Materials and Devices, 2017, 2, 165-171.
- P. Samarasekara, N. Premasiri, Structural Properties of Spin-Coated Multilayered Cupric Oxide Thin Films, Research & Reviews: Journal of Physics, 2015, 4, 8-13.
- N.M. Amin, S.S. Ng, Low-cost growth of magnesium doped gallium nitride thin films by sol-gel a spin coating method, IOP Conference Series: Materials Science and Engineering, 2018, https://doi.org/10.1088/1757- 899X/284/1/012031.
- M. Nebi, D. Peker, S. Teme, Deposition of Co Doped TiO2 Films Using Sol-Gel Spin Coating
Technique and Investigation of Bandgap, AIP Conference Proceedings, 2018, https://doi.org/10.1063/1.5026010.
- T. Todorov, M. Kita, J. Carda, P. Escribano, Cu2ZnSnS4 Films Deposited by a Soft-Chemistry Method, Thin Solid Films, 2009, 517, 2541–2544.
- Q. Guo, Y. Cao, J. Caspar, W. Farneth, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, K.R. Choudhury, H.D. Rosenfeld, W. Wu, A Simple Solution-Based Route to High-Efficiency CZTSSe Thin-Film Solar Cells, 2012, 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 2993-2996.
- M.R. Prasad, M. Haris, M. Sridharan, NH3 Sensing Properties of Surface Modified
Ce-doped Nanostructured ZnO Thin Films Prepared by Spray Pyrolysis Method, Sensors and Actuators A: Physical, 2018, 269,
-443.
- J.M. Pingarron, P. Yanez-Sedeno, A. Gonzalez-Cortes, Gold Nanoparticle-Based
Electrochemical Biosensors, Electrochimica Acta, 2008, 53, 5848-5866.
- M.M. Hassan, A. Ranzoni, M. Cooper, A Nanoparticle-Based Method for Culture-Free Bacterial DNA Enrichment from Whole Blood, Biosensors and Bioelectronics, 2018, 99,
-155.
- F. Hua, J. Shi, Y. Lvov, T. Cui, Patterning of Layer-by-Layer Self-Assembled Multiple Types of Nanoparticle Thin Films by Lithographic Technique, Nano Letters, 2002, 2, 1219-1222.
- M. Sebastian, A. Aravind, B. Mathew, Green Silver-Nanoparticle-Based Dual Sensor for Toxic Hg(II) Ions, Nanotechnology, 2018, 29, https://doi.org/10.1088/1361-6528/aacb9a.
- G. Simonsen, M. Strand, G. Oye, Potential Applications of Magnetic Nanoparticles within Separation in the Petroleum Industry, Journal of Petroleum Science and Engineering, 2018, 165, 488-495.
- M. Esfe, A.A. Nadooshan, A. Arshi, A. Alirezaie, Convective Heat Transfer and Pressure Drop of Aqua Based TiO2 Nanofluids at Different Diameters of Nanoparticles: Data Analysis and Modeling with Artificial Neural Network, Physica E: Low-dimensional Systems and Nanostructures, 2018, 97, 155-161.
- A. Ashok, S.N. Vijayaraghavan, G.E. Unni, S.V. Nair, M. Shanmugam, On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar
cells, Nanotechnology, 2018, 29, DOI: 10.1088/1361-6528/aaae45.
- E. Georgiou, S.A. Choulis, F. Hermerschmidt, S. Pozov, I. Burguésâ€Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, Printed Copper Nanoparticle Metal Grids for Cost-Effective ITO-Free
Solution Processed Solar Cells, RRL Solar, 2018, 2, DOI: 10.1002/solr.201700192.
- P.R. Nikam, P.K. Baviskar, S. Majumder, J.V. Sali, B.R. Sankapal, SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect, Journal of Colloid and Interface Science, 2018, 524, 148-155.
- P. Vijayakumar, R. Govindaraj, N. Santhosh, M.S. Pandian, A. Pandikumar, P. Ramasamy, Investigation of Suitable Binder Combination and Electrochemical Charge Transfer Dynamics of Vanadium Carbide Nanoparticles-Based Counter Electrode in Pt-free Dye-Sensitized Solar Cell, Journal of Materials Science, 2018, 53, 4444–4455.
- M.G. Fontana, N.D. Greene, J. Klerer, Corrosion Engineering, McGraw Hill Education, 1968. doi:10.1149/1.2411256.
- M. Froment, Passivity of metals and semiconductors- Proceedings of the fifth international symposium on passivity, 1983. https://www.elsevier.com/books/passivity-of-metals-and-semiconductors/froment/978-0-444-42252-1.
- P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei, A.A. Rahim, Reviews on Corrosion Inhibitors: A Short View, Chem. Eng. Commun. 203 (2016) 1145–1156. doi:10.1080/00986445.2016.1172485.
- P.S. Sidky, M.G. Hocking, Review of inorganic coatings and coating processes for reducing wear and corrosion, Br. Corros. J. 34 (1999) 171–183. doi:10.1179/000705999101500815.
- M. Ates, A review on conducting polymer coatings for corrosion protection, J. Adhes. Sci. Technol., 2016, 30, 1510–1536. doi:10.1080/01694243.2016.1150662.
- S.M. Hassani-Gangaraj, A. Moridi, M. Guagliano, Critical review of corrosion protection by cold spray coatings, Surf. Eng., 2015, 31, 803–815. doi:10.1179/1743294415Y.0000000018.
- S. Sathiyanarayanan, G. Rajagopal, N. Palaniswamy, M. Raghavan, Corrosion protection by chemical vapor deposition: A review, Corros. Rev. 23 (2005) 355–370. doi:10.1515/CORRREV.2005.23.4-5-6.355.
- Y. Wu, W. Zhao, W. Wang, L. Wang, Q. Xue, Novel anodic oxide film with self-sealing layer showing excellent corrosion resistance, Sci. Rep. 7 (2017) 1344. doi:10.1038/s41598-017-01549-y.
- A.S. Hamdy, D.P. Butt, Environmentally compliant silica conversion coatings prepared by sol-gel method for aluminum alloys, Surf. Coatings Technol. 201 (2006) 401–407.
doi: 10.1016/j.surfcoat.2005.11.142.
- S. Shen, S. Cai, G. Xu, H. Zhao, S. Niu, R. Zhang, Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy, J. Mech. Behav. Biomed. Mater. 45 (2015) 166–174. doi: 10.1016/j.jmbbm.2015.02.005.
- M.F. Montemor, Functional and smart coatings for corrosion protection: A review of recent advances, Surf. Coatings Technol. 258 (2014) 17–37. doi: 10.1016/j.surfcoat.2014.06.031.
- A.S.H. Makhlouf, I. Tiginyanu, New book Nanocoatings and Ultra-Thin Films: Technologies and Applications, First edit, Woodhead Publishing, 2011. https://www.sciencedirect.com/science/book/9781845698126.
- D. Snihirova, S. V. Lamaka, M.F. Montemor, Smart composite coatings for corrosion protection of aluminium alloys in aerospace applications, in Smart Compos. Coatings Membr. Transp. Struct. Environ. Energy Appl., Elsevier, 2015: pp. 85–121. doi:10.1016/B978-1-78242-283-9.00004-X.
- J. Gasiorek, A. Szczurek, B. Babiarczuk, J. Kaleta, W. Jones, J. Krzak, Functionalizable sol-gel silica coatings for corrosion mitigation, Materials (Basel). 11 (2018) 197. doi:10.3390/ma11020197.
- R.B. Figueira, C.J.R. Silva, E. V. Pereira, Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress, J. Coatings Technol. Res. 12 (2015) 1–35. doi:10.1007/s11998-014- 9595-6.
- M. Samadzadeh, S.H. Boura, M. Peikari, S.M. Kasiriha, A. Ashrafi, A review on self-healing coatings based on micro/nanocapsules, Prog. Org. Coatings. 68 (2010) 159–164. doi: 10.1016/j.porgcoat.2010.01.006.
- R.G. Buchheit, S.B. Mamidipally, P. Schmutz, H. Guan, Active corrosion protection in Ce-modified hydrotalcite conversion coatings, Corrosion. 58 (2002) 3–14. doi:10.5006/1.3277303.
- J. Ali Syed, H. Lu, S. Tang, X. Meng, Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by a spin coating technique, Appl. Surf. Sci. 325 (2015) 160–169.
doi: 10.1016/j.apsusc.2014.11.021.
- B.N. Grgur, A.R. Elkais, M.M. Gvozdenović, S. Drmanić, T.L. Trišović, B.Z. Jugović, Corrosion of mild steel with composite polyaniline coatings using different formulatons, Prog. Org. Coatings. 79 (2015) 17–24. doi: 10.1016/j.porgcoat.2014.10.013.
- W. Choi, J. Lee, Graphene: synthesis and applications, First Edit, CRC Press, 2016.
- A.G. Nada F. Atta, Hagar K. Hassan, Functionalized carbon-based materials for sensing and biosensing applications: from graphite to graphene, in N.F. Atta (Ed.), Des.
Nanosensors Chem. Biol. Appl., International Frequency Sensor Association Publishing S. L., Barcelona, 2017: pp. 262-319.
- A. Galal, H.K. Hassan, T. Jacob, N.F. Atta, Enhancing the specific capacitance of SrRuO3and reduced graphene oxide in NaNO3, H3PO4and KOH electrolytes, Electrochim. Acta. 260 (2018) 738-747.
doi: 10.1016/j.electacta.2017.12.026.
- Y. Wu, D.B. Farmer, F. Xia, P. Avouris, Graphene electronics: Materials, devices, and circuits, Proc. IEEE. 101 (2013) 1620-1637. doi:10.1109/JPROC.2013.2260311.
- L. Kyhl, S.F. Nielsen, A.G. Čabo, A. Cassidy, J.A. Miwa, L. Hornekær, Graphene as an anti-Corrosion coating layer, Faraday Discuss. 180 (2015) 495-509. doi:10.1039/c4fd00259h.
- C. Sire, F. Ardiaca, S. Lepilliet, J.W.T. Seo, M.C. Hersam, G. Dambrine, H. Happy, V. Derycke, Flexible gigahertz transistors derived from solution-based single-layer graphene, Nano Lett. 12 (2012) 1184-1188. doi:10.1021/nl203316r.
- R.R. Nair, H.A. Wu, P.N. Jayaram, I. V. Grigorieva, A.K. Geim, Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes, Science. 335 (2012) 442-444. doi:10.1126/science.1211694.
- J.H. Huh, S.H. Kim, J.H. Chu, S.Y. Kim, J.H. Kim, S.Y. Kwon, Enhancement of seawater
corrosion resistance in copper using acetone-derived graphene coating, Nanoscale, 2014, 6, 4379-4386. doi:10.1039/c3nr05997a.
- N.W. Pu, G.N. Shi, Y.M. Liu, X. Sun, J.K. Chang, C.L. Sun, M. Der Ger, C.Y. Chen, P.C. Wang, Y.Y. Peng, C.H. Wu, S. Lawes, Graphene is grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates, J. Power Sources. 282 (2015) 248-56.
doi: 10.1016/j.jpowsour.2015.02.055.
- M. Merisalu, T. Kahro, J. Kozlova, A. Niilisk, A. Nikolajev, M. Marandi, A. Floren, H. Alles, V. Sammelselg, Graphene-polypyrrole thin hybrid corrosion resistant coatings for copper, Synth. Met., 2015, 200, 16-23.
doi: 10.1016/j.synthmet.2014.12.024.
- P.K. Nayak, C.J. Hsu, S.C. Wang, J.C. Sung, J.L. Huang, Graphene coated Ni films: A protective coating, Thin Solid Films. 529 (2013) 312-316.
doi: 10.1016/j.tsf.2012.03.067.
- A.S. Kousalya, A. Kumar, R. Paul, D. Zemlyanov, T.S. Fisher, Graphene: An effective oxidation barrier coating for liquid and two-phase cooling systems, Corros. Sci. 69 (2013) 5-10. doi: 10.1016/j.corsci.2012.12.014.
- - L.F. Dumée, L. He, Z. Wang, P. Sheath, J. Xiong, C. Feng, M.Y. Tan, F. She, M. Duke, S. Gray, A. Pacheco, P. Hodgson, M. Majumder, L. Kong, Growth of nano-textured graphene coatings across highly porous stainless steel support towards corrosion resistant coatings, Carbon N. Y. 87 (2015) 395-408.
doi: 10.1016/j.carbon.2015.02.042.
- Y. Li, Z. Yang, H. Qiu, Y. Dai, Q. Zheng, J. Li, J. Yang, Self-aligned graphene as an anticorrosive barrier in waterborne polyurethane composite coatings, J. Mater. Chem. A. 2 (2014) 14139-14145. doi:10.1039/c4ta02262a.
- B. Pan, J. Zhao, Y. Zhang, Y. Zhang, Wear performance and mechanisms of polyphenylene sulfide/ polytetrafluoroethylene wax composite coatings reinforced by graphene, J. Macromol. Sci. Part B Phys. 51 (2012) 1218-1227. doi:10.1080/00222348.2011.627821.
- J.M. Yeh, S.J. Liou, C.Y. Lai, P.C. Wu, T.Y. Tsai, Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline - Clay nanocomposite materials, Chem. Mater. 13 (2001) 1131-1136. doi:10.1021/cm000938r.
- - A. Janković, S. Eraković, M. Mitrić, I.Z. Matić, Z.D. Juranić, G.C.P. Tsui, C.Y. Tang, V. Mišković-Stanković, K.Y. Rhee, S.J. Park, Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in a simulated body fluid, J. Alloys Compd., 2015, 624, 148–157. doi: 10.1016/j.jallcom.2014.11.078.
- Z. Yu, H. Di, Y. Ma, L. Lv, Y. Pan, C. Zhang, Y. He, Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings, Appl. Surf. Sci. 351 (2015) 986-996.
doi: 10.1016/j.apsusc.2015.06.026.
- A. Galal, K.M. Amin, N.F. Atta, H.A. Abd ElRehim, the Protective ability of graphene prepared by γ-irradiation and impregnated with
organic inhibitor applied on AISI 316 stainless steel, J. Alloys Compd. 695 (2017) 638–647. doi: 10.1016/j.jallcom.2016.11.081.
- N.F. Atta, K.M. Amin, H.A. Abd El-Rehim, A. Galal, Graphene prepared by gamma irradiation
for corrosion protection of stainless steel 316 in chloride containing electrolytes, RSC Adv. 2015, 5, 71627-71636. doi:10.1039/c5ra11287g.
- T.S.N. Sankara Narayanan, Nanocoatings to improve the tribocorrosion performance of materials, in Corros. Prot. Control Using Nanomater., Elsevier, 2012, pp. 167-212.
doi:10.1016/B978-1-84569-949-9.50008-3.
- N. Elkhoshkhany, A. Hafnway, A. Khaled, Electrodeposition and corrosion behavior of nano-structured Ni- WC and Ni-Co-WC composite coating, J. Alloys Compd. 695 (2017) 1505-1514.
doi: 10.1016/j.jallcom.2016.10.290.
- C. Qiu, D. Liu, K. Jin, L. Fang, T. Sha, Corrosion resistance and micro-tribological properties of nickel hydroxide-graphene oxide
composite coating, Diam. Relat. Mater. 76 (2017) 150-156.
doi: 10.1016/j.diamond.2017.04.015.
- S. Dehgahi, R. Amini, M. Alizadeh, Corrosion, passivation and wear behaviors of electrodeposited Ni-Al2O3-SiC nano-composite coatings, Surf. Coatings Technol. 304 (2016) 502-511.
doi: 10.1016/j.surfcoat.2016.07.007.
- Y. Yang, Y.F. Cheng, Mechanistic aspects of electrodeposition of Ni-Co-SiC composite nano-coating on carbon steel, Electrochim. Acta. 109 (2013) 638-644. doi: 10.1016/j.electacta.2013.07.106.
- D.G. Shchukin, H. Möhwald, Self-repairing coatings containing active nanoreservoirs, Small. 3 (2007) 926–943. doi:10.1002/smll.200700064
- A.E. Hughes, I.S. Cole, T.H. Muster, R.J. Varley, Designing green, self-healing coatings for metal protection, NPG Asia Mater. 2 (2010) 143-151. doi:10.1038/asiamat.2010.136.
- - E. V. Skorb, D. Fix, D. V. Andreeva, H. Möhwald, D.G. Shchukin, Surface-modified mesoporous SiO2 containers for corrosion protection, Adv. Funct. Mater. 19 (2009) 2373–2379. doi:10.1002/adfm.200801804.
- G.B. Sukhorukov, E. Donath, S. Moy, Microencapsulation using step-wise adsorption of polyelectrolytes, J. Microencapsul. 17 (2000) 177-185. doi:10.1080/026520400288418.
- M.G.S. Ferreira, M.L. Zheludkevich, J. Tedim, K.A. Yasakau, Self-healing nanocoatings for
corrosion control, in: Corros. Prot. Control Using Nanomater., Elsevier, 2012, 213-263. doi:10.1016/B978-1-84569-949- 9.50009-5.
- A. Shah, S. Izman, S.N.F. Ismail, M.H. Ayu, R. Daud, M.R. Abdul-Kadir, Physical vapour deposition on corrosion resistance: A review, APRN- J. Eng. Appl. Sci., 2018, 13, 3515-3523. ISSN 1819-6608.
- T. Mashiki, H. Hikosaka, H. Tanoue, H. Takikawa, Y. Hasegawa, M. Taki, M. Kumagai and M. Kamiya, TiAlN film preparation by Y-shape filtered-arc deposition system. Thin Solid Films. 516 (2008) 6650-6654. doi.org/10.1016/j.tsf.2007.11.097.
- C.C. Lin, J.-W. Lee, K.-L. Chang, W.-J. Hsieh, C.-Y. Wang, Y.-S. Chang and H.C. Shih, The effect of the substrate bias voltage on the mechanical and corrosion properties of chromium carbide thin films by filtered cathodic vacuum arc deposition. Surf. Coat. Tech. 200 (2006) 2679-2685. 10.1016/j.surfcoat.2005.01.029.
- J.C. Caicedo, C. Amaya, L. Yate, W. Aperador, G. Zambrano, M.E. Gómez, J. AlvaradoRivera, J. Muñoz-Saldaña and P. Prieto, Effect of applied bias voltage on corrosion-resistance for TiC1−xNx and Ti1−xNbxC1−yNy coatings, Appl. Surf. Sci. 256 (2010) 2876-2883. doi.org/10.1016/j.apsusc.2009.11.042.
- L.A.S. Ries, D.S. Azambuja, I.J.R. Baumvol, Corrosion resistance of steel coated with Ti/TiN multilayers. Surf. Coat. Tech., 89 (1997) 114-120. doi.org/10.1016/S0257-8972(96)03092-7.
- J. Creus, H. Idrissi, H. Mazille, F. Sanchette, P. Jacquot, Corrosion behaviour of Al/Ti coating elaborated by cathodic arc PVD process onto mild steel substrate, Thin Solid Films, 346 (1999) 150-154. doi.org/10.1016/S0040-6090(98)01742-8.
- A.K. Singh, T.R.G. Kutty, S. Sinha, Pulsed laser deposition of corrosion protective Yttrium Oxide (Y2O3) coating, J. Nucl. Mater. 420 (2012) 374-381.
doi: 10.1016/j.jnucmat.2011.10.028.
- A.K. Singh, S. Kaity, K. Singh, J. Thomas, T.R.G. Kutty, S. Sinha, Pulsed laser deposition of alumina coating for corrosion protection against liquid uranium, Mater. Chem. Phys. 143 (2014) 1446-1451. doi.org/10.1016/j.matchemphys.2013.11.063.
- M. Okoshi, T. Maniwa, M. Hanabusa, Corrosion-resistant iron thin films formed by pulsed laser deposition with cast iron targets, Appl. Surf. Sci. 127-129 (1998) 462–465. doi.org/10.1016/S0169-4332(97)00673-9.
- D. Wang, G.P. Bierwagen, Sol-gel coatings on metals for corrosion protection, Prog. Org. Coat. 64 (2009) 327-338. doi: 10.1016/j.porgcoat.2008.08.010.
- C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Harcourt Brace Jovanovich (Academic Press, Inc.), Boston, 1990.
- P. Galliano, J.J.D. Damborenea, M.J. Pascual, A. Duran, Sol-Gel Coatings on 316L Steel for Clinical Applications, J. Sol-Gel Sci. Technol. 13 (1998) 723-727. doi.org/10.1023/A:100865320.
- J. Wen, G.L. Wilkes, Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach, Chem. Mater., 1996, 8, 1667-1681. doi.org/10.1021/cm9601143. [R 142- 62]
- T. Sugama, J. Coat. Technol. Res., Cerium acetate-modified aminopropylsilane triol: A precursor of corrosion-preventing coating for aluminum-finned condensers, 2 (2005) 649-659.
- F.N. Jones, M.E. Nichols, S.P. Pappas, Organic Coating Science and Technology, Fourth Edition, Wiley (1998) 99-114. doi:10.1002/9781119337201.
- D. Battocchi, G.P. Bierwagen, Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer, Corros. Sci. 48 (2006) 2226-2240. doi.org/10.1016/j.corsci.2005.05.059.
- E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: A review, Critical Reviews in Solid State and Materials Sciences, 42 (2017) 416-43.
- K. P. Kamloth, Semiconductor junction gas sensors, Chemical Reviews, 2008,108,367-399.
- A. Kooser, R. L. Gunter, W. D. Delinger, T. L. Porter, M. P. Eastman, Gas sensing using embedded piezoresistive microcantilever sensors, Sensors and Actuators B: Chemical, 99 (2004) 474-479.
- L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, M. C. Wurz, Recent developments of magnetoresistive sensors for industrial applications, Sensors, 15 (2015) 28665-28689.
- A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, K. S. Goto, Solid-state gas sensors: A review, J. Electrochem. Soc., 1992, 139, 3670-3709.
- X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology, Sensors, 2012, 12, 9635-9665.
- S. Semancik, R.E. Cavicchi, The use of surface and thin film science in the development of advanced gas sensors, Applied Surface Science 70/71 (1993) 337-346.
- T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components
using semiconductive thin films, Analytical Chemistry, 34 (1962) 1502.
- C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, Sensors, 2010, 10, 2088-2106.
- W. Zhang, B. Yang, J. Liu, X. Chen, X. Wang, C. Yang, Highly sensitive and low operating
temperature SnO2 gas sensor doped by Cu and Zn two elements, Sensors and Actuators B: Chemical, 243 (2017) 982-989.
- S. A. Vanalakar, V. L. Patil, N. S. Harale, S. A. Vhanalakar, M. G. Gang, J. Y. Kim, P. S. Patil, J. H. Kim, Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications, Sensors and Actuators B: Chemical, 221 (2015) 1195-1201.
- G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors, Sensors and Actuators B: Chemical, 23 (1995)
-109.
- A. Dey, Semiconductor-metal oxide gas sensors: A review, Materials Science and Engineering: 2018, B, 229, 206-217.
- S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, P. S. Patil, Sensitive and selective NO2 gas sensor based on WO3 nanoplates, Sensors and Actuators B: Chemical, 2017, 240, 426-433.
- S. P. Patil, V. L. Patil, S. S. Shendage, N. S. Harale, S. A. Vanalakar, J. H. Kim, P. S. Patil, Spray pyrolyzed indium oxide thick films as NO2 gas sensor, Ceramics International, 2016, 42, 16160-16168.
- M. K. Sofian, M. E. Oussama, A. A. Imad, C. K. Marsha, Semiconducting metal oxide based sensors for selective gas pollutant detection, Sensors, 2009, 9 8158-8196.
- C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 2010, 10, 2088-2106.
- V. L. Patil, S. A. Vanalakar, P. S. Patil, J. H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique, Sensors and Actuators B: Chemical, 2017, 239 1185-1193.
- L. Holland, Vacuum Deposition of Thin Films (1956) Chapman and Hall Publication, London.
- J. E. Greene, Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017, Journal of Vacuum Science & Technology 2017, A 35, 05C204.
- T. M. Onn, R. Küngas, P. Fornasiero, K. Huang, R. J. Gorte, Inorganics 6 (2018) 34.
- S. A. Vanalakar, G. L. Agawane, S. W. Shin, M. P. Suryawanshi, K. V. Gurav, K. S. Jeon, P. S. Patil, C. W. Jeong, J. Y. Kim, J. H. Kim, A review on pulsed laser deposited CZTS thin films for solar cell applications, Journal of Alloys and Compounds 619 (2015) 109-121.
- S. A. Vanalakar, P. S. Patil, J. H. Kim, Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: A review, Solar Energy Materials and Solar Cells 182 (2018) 204-219.
- G. Kiriakidis, K. Moschovis, I. Kortidis, V. Binas, Ultra-low gas sensing utilizing metal oxide thin films, Vacuum, 2012, 86, 495-506.
- - S.A. Vanalakar, Chemical synthesis of CdS, ZnO and CdS sensitized ZnO thin films and their characterization for photoelectrochemical, solar cells. PhD dissertation, submitted to
Shivaji Univ., Kolhapur, India, 2010, Jun. [Online]. Available:
http://hdl.handle.net/10603/4064.
- S. Wei, G. Zhao, W. Du, Q. Tian, Synthesis
and excellent acetone sensing properties of porous WO3 nanofibers, Vacuum, 2016, 124,
-39.
- R. Zhang, X. Liu, T. Zhou, L. Wang, T. Zhang, Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor, Journal of Colloid and Interface Science, 2018, 524, 76-83.
- C. Zhao, H. Gong, W. Lan, R. Ramachandran, H. Xu, S. Liu, F. Wang, Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors, Sensors and Actuators B: Chemical, 2018, 258, 492-500.
DOI: http://dx.doi.org/10.13171/mjc7618111916hs
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Mediterranean Journal of Chemistry