Cover Image

New sulfonamide hybrids: synthesis, in vitro antimicrobial activity and docking study of some novel sulfonamide derivatives bearing carbamate/acyl-thiourea scaffolds

Modather F Hussein

Abstract


In this study, the novel hybrids sulfonamide carbamates were synthesized by treatment of N-substituted 4-isothiocyanatophenyl sulfonamides with ethyl carbamate in dry 1,4-dioxane at reflux temperature in the presence of triethylamine. Also, treatment of Phenylacetylisothiocyanate with sulfanilamide in refluxing acetonitrile afforded the corresponding hybrid sulfonamide acylthiourea derivatives. The anti-microbial activities of the synthesized compounds were evaluated. Ethyl ({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl)-phenyl]carbamothioyl)- carbamate and 2-Phenyl-N-((4-(N-thiazol-2-yl)sulfamoyl)-phenyl)carbamothioyl)-acetamide exhibited the best activity against tested bacteria. Molecular docking studies for the final compounds were performed using the Open Eye docking suite. Moreover, Ligand efficiency (LE) and lipophilic ligand efficiency (LLE) parameters for Ethyl ({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl)phenyl]carbamothioyl)-carbamate and 2-Phenyl-N-((4-(N-thiazol-2- yl)sulfamoyl)phenyl)carb-amothioyl)acetamide were evaluated. Quantum chemical calculations based on density functional theory (DFT) have been performed.


Full Text:

PDF

References


- M. Singh, M. Kaur, N. Chadha, and O. Silakari, Hybrids: a new paradigm to treat Alzheimer’s disease, Mol. Divers., 2016, 20, 271–297.

- S. Mishra and P. Singh, Hybrid molecules: The privileged scaffolds for various pharmaceuticals, Eur. J. Med. Chem., 2016,

, 500–536.

- A. Tačić, V. Nikolić, L. Nikolić, and I. Savić, Antimicrobial sulfonamide drugs, Adv. Technol., 2017, 6, 58–71.

- O. M. Parasca, F. Gheaţă, A. Pânzariu, I. Geangalău, and L. Profire, Importance of sulfonamide moiety in current and future therapy., Rev. Med. Chir. Soc. Med. Nat. Iasi,2013, 117, 558–564.

- A. Kołaczek, I. Fusiarz, J. Ławecka, and D. Branowska, Biological activity and synthesis of sulfonamide derivatives: a brief review,

Chemik, 2014, 68, 620–628.

- D. Vullo et al., The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly

inhibited by sulfonamides, Bioorg. Med. Chem., 2013, 21, 4521-4525.

- Y. Kanda et al., Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists, Bioorg. Med. Chem., 2001, 9, 897-907.

- S. S. Stokes et al., Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate uridylyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 2: optimization of physical properties leading to antibacterial aryl sulfonamides, Bioorg. Med. Chem. Lett., 2012, 22, 7019-7023.

- K. Chibale et al., Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine, Bioorg. Med. Chem. Lett., 2001, 11, 2655-2657.

- I. R. Ezabadi et al., Sulfonamide-1, 2, 4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies, Bioorg. Med. Chem., 2008, 16, 1150-1161.

- J. F. Kennedy and M. Thorley, Pharmaceutical Substances, 3rd Ed, A. Kleeman, J. Engel, B. Kutscher & D. Reichert George Thieme Verlag, Stuttgart/New York, 1999, 2286 pp., ISBN 3-13-558403-8 / 0-86577-817-5. [0pt] [Electronic Version. ISBN 3-13-115133-1 / 0-86577-818-3], Bioseparation, 1999, 8, 336.

- C. S. Gal, An Overview of SR121463, a Selective Non-Peptide Vasopressin V2 Receptor Antagonist, Cardiovasc. Drug Rev., 2001, 19, 201-214.

- A. Natarajan et al., Novel arylsulfoanilide-oxindole hybrid as an anticancer agent that inhibits translation initiation, J. Med. Chem., 2004, 47, 4979-4982.

- J. M. Beale, J. Block, and R. Hill, Organic medicinal and pharmaceutical chemistry. Lippincott Williams & Wilkins Philadelphia, 2010.

- J. I. Levin et al., Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1′ group, Bioorg. Med. Chem.

Lett., 2002, 12, 1199–1202.

- D.-K. Kim et al., Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5′-sulfonamide moiety of a phenyl ring, Bioorg. Med. Chem., 2001, 9,

–3021.

- B. Hu et al., Novel (4-piperidin-1-yl)-phenyl sulfonamides as potent and selective human β3 agonists, Bioorg. Med. Chem., 2001, 9,

–2059.

- T. Ma et al., A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non- small cell lung cancer

patients, Chemotherapy, 2012, 58, 321–329.

- M. Krátký et al., Sulfadiazine salicylaldehyde-based Schiff bases: Synthesis, antimicrobial activity and cytotoxicity, Molecules, 2017, 22, 1573.

- B. Testa and J. M. Mayer, Hydrolysis in drug and prodrug metabolism. John Wiley & Sons, 2003.

- S. Ray and D. Chaturvedi, Application of organic carbamates in drug design. Part 1: Anti-cancer agents-recent reports, Drugs Fut, 2004, 29, 343-357.

- S. Ray, S. R. Pathak, and D. Chaturvedi, Organic carbamates in drug development. Part II: antimicrobial agents- Recent reports, Drugs Futur., 2005, 30, 161-180.

- A. K. Ghosh and M. Brindisi, Organic carbamates in drug design and medicinal chemistry, J. Med. Chem., 2015, 58, 2895-2940.

- D. Chaturvedi, Perspectives on the synthesis of organic carbamates, Tetrahedron, 2012, 1, 15-45.

- D. B. Janakiramudu et al., Sulfonamides and carbamates of

-fluoro-4-morpholinoaniline (linezolid intermediate): synthesis, antimicrobial activity and molecular docking study, Res. Chem. Intermed., 2018, 44, 469-489.

- A. Dibenedetto, M. Aresta, C. Fragale, and M. Narracci, Reaction of silylalkylmono-and silylalkyldi-amines with carbon dioxide: evidence of formation of inter-and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis, Green Chem., 2002, 4, 439-443.

- L. L. Martin et al., Synthesis and preliminary structure-activity relationships of 1-[(3-fluoro-4-pyridinyl) amino]- 3-methyl-1H-indol-5-yl methyl carbamate (P10358), a novel acetylcholinesterase inhibitor, Bioorg. Med. Chem. Lett., 1997, 7, 157-162.

- T. W. Wuts, P. G. M.; Greene, Protective Groups in Organic Synthesis, 4th. Ed. Wiley: Hoboken, NJ, 2006.

- M. Koketsu and H. Ishihara, Thiourea and seleno urea and their applications, Curr. Org. Synth., 2006, 3, 439-455.

- A. P. Keche, G. D. Hatnapure, R. H. Tale, A. H. Rodge, S. S. Birajdar, and V. M. Kamble, A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: synthesis, anti-inflammatory and antimicrobial evaluation, Bioorg. Med. Chem. Lett., 2012, 22, 3445-3448.

- K. Ekoue-Kovi et al., Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas, Bioorg. Med. Chem., 2009, 17, 270-283.

- Z. Zhong, R. Xing, S. Liu, L. Wang, S. Cai, and P. Li, Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro, Carbohydr. Res., 2008, 343, 566-570.

- H. M. Faidallah, K. A. Khan, and A. M. Asiri, Synthesis of some new 2-oxo-1, 4-disubstituted-1, 2, 5, 6-tetrahydro-benzo [h] quinoline-3-carbonitriles and their biological evaluation as cytotoxic and antiviral agents, J. Chem. Sci., 2012, 124, 625-631.

- I. Koca, A. Özgür, K. A. Coşkun, and Y. Tutar, Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety, Bioorg. Med. Chem., 2013, 21, 3859-3865.

- H.-Q. Li, T. Yan, Y. Yang, L. Shi, C.-F. Zhou, and H.-L. Zhu, Synthesis and structure-activity relationships of N-benzyl-N-(X-2-hydroxybenzyl)-N′-phenylureas and thioureas as antitumor agents, Bioorg. Med. Chem., 2010, 18, 305-313.

- P.-C. Lv, H.-Q. Li, J. Sun, Y. Zhou, and H. L. Zhu, Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents, Bioorg. Med. Chem., 2010, 18, 4606-4614.

- H. Peng, Y. Liang, L. Chen, L. Fu, H. Wang, and H. He, Efficient synthesis and biological evaluation of 1, 3- benzenedicarbonyl di-thioureas, Bioorg. Med. Chem. Lett., 2011, 21, 1102-1104.

- A. Liav, S. K. Angala, P. J. Brennan, and M. Jackson, ND-aldopentofuranosyl-N-[p-(isoamyloxy) phenyl]- thiourea derivatives: potential anti-TB therapeutic agents, Bioorg. Med. Chem. Lett., 2008, 18, 2649-2651.

- E. De Clercq, In search of selective antiviral chemotherapy., Clin. Microbiol. Rev., 1997, 10, 674-693.

- E. De Clercq, Hamao Umezawa Memorial Award Lecture1:“An Odyssey in the Viral Chemotherapy Field,Int. J. Antimicrob. Agents, 2001, 18, 309-328.

- J. Parekh and N. Karathia, Screening of some traditionally used medicinal plants for potential antibacterial activity, Indian J. Pharm. Sci., 2006, 68.

- M. F. Richter et al., Predictive compound accumulation rules yield a broad-spectrum antibiotic, Nature, 2017, 545, 299.

- D. W. Boykin, R. L. Hertzler, J. K. Delphon, and E. J. Eisenbraun, Oxygen-17 NMR studies on alkylindanones: steric effects, J. Org. Chem., 1989, 54, 1418-1423.

- M. S. A. El-Gaby, M. M. Ghorab, Z. H. Ismail, S. M. Abdel-Gawad, and H. M. Aly, Synthesis, structural characterization and anticancer evaluation of pyrazole derivatives, Med. Chem. Res., 2018, 27, 72-79.

- M. M. Ghorab, M. S. Alsaid, M. S. A. El-Gaby, N. A. Safwat, M. M. Elaasser, and A. M. Soliman, Biological evaluation of some new N-(2, 6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents, Eur. J. Med. Chem., 2016, 124, 299-310.

- M. M Ghorab et al., Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition, Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents), 2017, 17, 1411-1425.

- M. M. Ghorab, M. S. A. El-Gaby, A. M. Soliman, M. S. Alsaid, M. M. Abdel-Aziz, and M. M. Elaasser, Synthesis, docking study and biological evaluation of some new thiourea derivatives bearing benzenesulfonamide moiety, Chem. Cent. J., 2017, 11, 42.

- M. M. Ghorab, M. S. Alsaid, M. S. A. El-Gaby, M. M. Elaasser, and Y. M. Nissan, Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: synthesis, biological evaluation and molecular docking, Chem. Cent. J., 2017, 11, 32.

- T. Yun, T. Qin, Y. Liu, and L. Lai, Identification of acyl-thiourea derivatives as potent Plk1 PBD inhibitors, Eur. J. Med. Chem., 2016, 124, 229-236.

- S. Sharma, Isothiocyanates in heterocyclic synthesis, Sulfur Reports, 1989, 8, 327-454.

- A. K. Mukherjee and R. Ashare, Isothiocyanates in the chemistry of heterocycles, Chem. Rev., 1991, 91, 1-24.

- M. Uher, L. Floch, and J. Jendrichovský, N-Substituted 4-

isothiocyanatophenylsulfonamides, Collect. Czechoslov. Chem. Commun., 1974, 39, 182–184.

- A. Saeed et al., Synthesis, computational studies and biological evaluation of new 1-acetyl-3-aryl thiourea derivatives as potent cholinesterase inhibitors, Med. Chem. Res., 2017, 26, 1635-1646.

- K. G. Bedane and G. S. Singh, Reactivity and diverse synthetic applications of acyl isothiocyanates., Ark. Online J. Org. Chem., 2015.

- A. Saeed, R. Qamar, T. A. Fattah, U. Flörke, and M. F. Erben, Recent developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas, Res. Chem. Intermed.,

, 43, 3053–3093.

- N. Cappuccino, J.G.; Sherman, Microbiology: A laboratory manual, Pearson/Benjamin Cummings. San Francisco, 2008.

- M.-K. Yun et al., Catalysis and sulfa drug resistance in dihydropteroate synthase, Science (80)., 2012, 335, 1110-1114.

- Fast Rigid Exhaustive Docking (FRED) Receptor, version 2.2.5; OpenEye Scientific Software, Santa Fe, NM (USA). [Online]. Available: http://www.eyesopen.com.

- OMEGA, version 2.5.1.4; OpenEye Scientific Software, Santa Fe, NM (USA). [Online]. Available: http://www.eyesopen.com.

- VIDA, version 4.1.2; OpenEye Scientific Software, Santa Fe, NM (USA).

- S. Schultes, C. de Graaf, E. E. J. Haaksma, I. J.P. de Esch, R. Leurs, and O. Krämer, Ligand efficiency as a guide in fragment hit selection

and optimization, Drug Discov. Today Technol., 2010, 7, e157–e162.

- A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648-5652.

- M. M. Francl et al., Self-onsistent molecular orbital methods. XXIII. A polarization-type basis set for a second-row elements, J. Chem. Phys., 1982, 77, 3654-3665.

- M. Frisch et al., Gaussian 09, revision a. 02, Gaussian, Inc., Wallingford, CT, 2009, 200.




DOI: http://dx.doi.org/10.13171/mjc751912111445mh

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Mediterranean Journal of Chemistry