Cover Image

Hydrothermal Sol-gel TiO2 Nanoparticles fixed to Clay and its Photocatalytic Application for the Degradation of Methyl Orange

Aliou Pohan, Hervé Goure-Doubi, Amadou Kouyate, Muhammad Nasir, Maria Visa, Lassiné Ouattara

Abstract


In this paper, Clay-TiO2 nanomaterials were synthesized via hydrothermal sol-gel method using Ivorian clays and titanium tetra-isopropoxide as precursors. The synthesized composite was characterized through XRD, SEM/EDX, FTIR and BET surface measurements. The photocatalytic activity of composite towards the degradation of methyl orange (MO), a model pollutant, has been investigated under UV and simulated solar radiation. Comparative experiments done in a solution with and without H2O2 indicate an increase in efficiency for methyl orange removal from the polluted water in the presence of H2O2. The optimized parameters (contact time, amount of nanocomposite and amount of Fe2+/H2O2) allowed to reach removal efficiency up to 60 % of MO. Immobilization of TiO2 on clay facilitate repeated using of nanomaterials, two time.


Full Text:

PDF

References


- Atchariyawut S, Phattaranawik J, Leiknes T, et al.Separation and Purification Technology, 2009, 66(1), 153-158.

- L. Jian-hua, W. Hai-jun, Journal of Chongqing University (English Edition), 2009, Vol. 8, No. 3

- J. Easton, Colour in Dye House Effluent, Alden Press, Oxford, 1995, 9-21.

- K. Selvam, K. Swaminathan, C. Keo-Sang, World J Microbiol Biotechnol., 2003, 19, 591-593.

- R.J. Maguire, Occurrence and persistence of dyes in a Canadian river, Water Sci Technol., 1992, 25, 265.

- L. Shamaei, B. Khorshidi, B. Perdicakis, M. Sadrzadeh, Treatment of oil sands produced water using combined electrocoagulation and chemical coagulation techniques, Science of the Total Environment, 2018, 645, 560-572.

- A.H. Konsowa, Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor, Desalination, 2003, 158, 233-240.

- H. Lei, H. Zhang, Y. Zou, X. Dong, Y. Jia, F. Wang, Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants, Journal of Alloys and Compounds, 2019, 809, 151840.

- J. N. Göde, D. H. Souza, V. Trevisan, E. Skoronski. Application of the Fenton and Fenton-like processes in the landfill leachate tertiary treatment, Journal of Environmental Chemical Engineering, 2019, 7, 103352

- Y. Li, Y. J. Zhao, H. Wang, M. Wang, the application of nanofiltration membrane for recovering lithium from Salt Lake brine, Desalination, 2019, 468, 114081.

- H.F. Xiao, C.H. Chu, W.T. Xu, B.Z. Chen, X.H. Ju, W. Xing, S.P. Sun, Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment, Journal of Membrane Science, 2019, 586, 44-52.

- C. Yao, T. Chen, An improved regression method for kinetics of adsorption from aqueous solutions, Journal of Water Process Engineering, 2019, 31, 100840.

- M.N. Rashed, A.A. El-Amin, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, Inter J Phy Sci., 2007, 2, 73-81.

- L. Caballero, K.A. Whitehead, N.S. Allen, J. Verran, Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light, J. Photochem. Photobiol., 2009, A 202, 92-98.

- A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentalsand Applications, BKC, Tokyo, 1999.

- E.N.S. Pelizzetti (Ed.), Homogeneous and Heterogeneous Photocatalysis, D. Reidel Publishing Company, Dordrecht, 1986.

- Y. Nosaka, T. Daimon, A.Y. Nosaka,

Y. Murakami, Singlet oxygen formation in photocatalytic TiO2 aqueous suspension, 2004, PCCP 6, 2917-2918.

- R. Wang, K. Hashimoto, A. Fujishima,

M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature, 1997, 388, 431-432.

- S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation, Green Chem., 2013, 15, 1814-1833.

- J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney, M. Rouse, Immobilisation of TiO2 powder for the treatment of polluted water, Appl. Catal., 1998, B 17, 25-36.

- N.M. Mahmoodia, M. Arami, N.M. Mahmoodi, M. Arami, Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium (IV) oxide nanoparticles, J. Photochem. Photobiol., 2006, A 182, 60-66.

- I. Turkevych, Y. Pihosh, M. Goto, A. Kasahara, M.Tosa, S. Kato, K. Takehana, T. Takamasu, G. Kido, N. Koguchi, Photocatalytic properties of titanium dioxide sputtered on a nanostructured substrate, Thin Solid Films, 2008, 516, 2387-2391.

- M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic Discolorization of Methyl Orange Solution by Pt Modified TiO2 Loaded on Natural Zeolite, Dyes Pigments, 2008, 77, 327-334.

- L. Andronic, A. Duta, Photodegradation process in two dyes systems -simultaneous analysis by first-order spectra derivative method, Chem. Eng. J., 2012, 198-199, 468-475.

- P.L.A. Guillaume, A.M. Chelaru, M. Visa,

O. Lassiné, Titanium Oxide- Clay as Adsorbent and Photocatalysts for Wastewater Treatment. J Membra SciTechnol8, 2017, 176. Doi: 10.4172/2155-9589.1000176

- M. Visa, A. Duta, enhanced heavy metals adsorption on dye – modified fly ash, J. Environ. Eng. Manage, 2009, 8, 803-808.

- S. Brunauer, P. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60, 309–319.

- M. Visa, A. Duta, Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems Journal of Hazardous Materials, 2013, 244-245, 773-779.

- A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, R. Parvizi, Synthesis, magnetic properties and X-ray analysis of Zn0.97X0.03O nanoparticles (X = Mn Ni, and Co) using Scherer and size–strain plot methods, Solid State Sci., 2012, 14 (4), 488-494.

- J.J. Tunney, C. Detellier, Aluminosilicate Nanocomposite Materials. Poly (ethylene glycol)-Kaolinite Intercalates, Chem. Mater., 1996, 8, 927-935.

- A.M.S., Al-shenti, Geology of The Arabian Shield, Copy 2. Jeddah, 2003, p. 204.

- Q. Mohsen, A. El-maghraby, Characterization and assessment of Saudi clays raw material at different area, Arabian Journal of Chemistry, 2010, 3, 271-277.

- H. Goure-Doubi, C. Martias, G. L. Lecomte-Nana, B. Nait-Ali, A. Smith, E. Thune, N. Villandier, V. Gloaguen, M. Soubrand, L. K. Konan, Interfacial reactions between humic-like substances and lateritic clay: Application to the preparation of ‘‘geomimetic’’ materials Journal of Colloid and Interface Science, 2014, 434, 208-217.

- H.G. Doubi, A.N. Kouamé, Konan, L.K., Tognonvi, M. and Oyetola, S. Thermal Conductivity of Compressed Earth Bricks Strengthening by Shea Butter Wastes with Cement. Materials Sciences and Applications, 2017, 8, 848-858.

- J. Guyot, Mesure des surfaces spécifiques des argiles par adsorption. Ana. Agron., 1969, 20(4), 333-359.

- B. PleÅ¡ingerová, G. SúÄik, M. Fabián, Surface area change of kaolin causing annealing, Acta Metallurgica Slovaca, 2011, Vol. 17, No. 3,

-176.

- G. Lecomte-Nana, J.P. Bonnet, N. Soro, Influence of iron onto the structural reorganization process during the sintering of kaolins, J. Eur. Ceram. Soc., 2013, 33, 661-668.

- C.S. Keng, Z. Zainal, A.H. Abdullah, Removal of cationic and anionic dyes by immobilized titanium dioxide loaded activated carbon, The Malaysian Journal of Analytical Sciences., 2008, vol. 12, no.2, 451-457.

- Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X. J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere, 2016, 144, 1530-1535.

- H.J.H. Fenton, Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, 1894, Vol. 65, pp. 899-901, ISSN

-1769.

- R. Ameta, K. A. Chohadia,, A. Jain, & P. B. Punjabi, Fenton and photo-Fenton Processes. Advanced Oxidation Processes for Waste Water Treatment, 2018, 49-87.

- H. Shen, C. Duan, J. Guo, N. Zhao, J. Xu, Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. J. Mater. Chem., 2015, A3,

-16669.




DOI: http://dx.doi.org/10.13171/mjc92190918430ap

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Mediterranean Journal of Chemistry