Treatment of statins drug (pravastatin and rosuvastatin) in water by electro-Fenton process: Kinetics of degradation/mineralization and optimization of experimental conditions for a biological post-treatment
Abstract
The treatment of pravastatin and rosuvastatin contaminated water as much as toxic and persistent organic pollutant was carried out by Electro-Fenton method EF. Several experiments were conducted in a cell compartment equipped with a platinum anode and a carbon felt cathode. The effects of several parameters such as the applied current and the catalyst Fe2+ concentration have been studied. Mineralization aqueous solutions of pravastatin followed by the chemical oxygen demand COD gave a higher degree of reduction of more than 90% for 6 hours of treatment at a current of 100 mA and Fe2+ concentration of 0.2 mM. The study of the degradation kinetics was followed during electrolysis by HPLC giving a pseudo first order reaction using a current of 100 mA and Fe2+ concentration of 0.1mM. A number of intermediate products for pravastatin and rosuvastatin have been identified using HPLC and liquid chromatography-mass spectrometry analyses. Biodegradability of the pre-treated solutions of two statins by EF was evaluated in order to decide the optimal moment to introduce the biological process. It was given by the ratio BOD5/COD which increases from 0 initially to 1.3 after 2 hours for pravastatin and from 0 initially to 1.5 after 3 hours for rosuvastatin as the COD decreases. It implies that EF tends to enhance the biodegradability and could be used as a pre-treatment step for biological treatment.
Full Text:
PDFReferences
- S. K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem. Rev, 2007, 107, 2319-2364.
- A.W. Garrison, J. D. Pope, F. R. Allen, GC/MS analysis of organic compounds in domestic wastewaters, in: C. H. Keith(Ed), Identification and analysis of organic pollutans in water, Ann Arbor Science Publishers, Ann Arbor, MI, 1976, 517-556.
- C. Hignite, D.L. Azarnoff, Drugs and drugs metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent, Life Sci, 1977, 20, 337-341
- M.L. Richardson, J.M. Bowron, the fate of pharmaceutical chemicals in the aquatic environment, J. Pharm. Pharmacol, 1985, 37, 1-12.
- I. Sirés, C. Arias, P. L. Cabot, F. Centellas, J. A. Ganido, R.M. Rodriguez, E. Brillas, Degradation of clofibric acid in acidic aqueous medium by electro-Fenton, Chemosphere, 2007, 66, 1660-1669.
- N. Vieno, T. Tuhkanen, L. Kronbeg, Elimination of pharmaceuticals in sewage treatment plants in Finland water Res, 2007, 41, 1001-1012.
- V. Hamem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices - A review.J. Environ. Manage, 2011, 92, 2304-2347.
- X.S. Miao, C.D. Metcalfe, Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography-electrospray ionization tandem mass spectrometry, J.Chromaogr. A,2003, 998, 133-141.
- S. Sleijfer, A.Van der Goast, A. Planting, G. Stoter, J. Verweij, The potential of statins as part of anti-cancer treatment, J.Cancer, 2005, 41, 516-522.
- P. Grobelny, V. Giampietro, D. Vidaldi, F. Dall'Acqua, J. Mielcarek, Photostability of Pitavastatin A novel HMG-CoA reductase inhibito, Journal of pharmaceutical and biomedical analysis, 2009, 50, 597-601.
- M.D. Hernando, A. Aguera, A.R. Fernandez-Alba, LC-MS analysis and environmental risk of lipid regulators, Anal Bioanal Chem, 2007, 387, 1269-1285.
- M. Piecha, M. Sarakha, P. Trebse, Photocatalytic degradation of cholesterol-lowering station drugs by TiO2-based catalyst.kinetics, analytical studies and toxicity evaluation, J Photochem Photobiol A, 2010, 213, 61-69.
- M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int, 2009, 35, 402-417.
- R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, Paracetamol oxidation from aqueous solution by means of ozonation and H2O2/UV system. Water Res, 2003, 37, 993-1004.
- I. Arsalan-Alaton, S. Dogrul, Pretreatment of penicillin formulation effluent by advanced oxidation processes, J Hazard Mater, 2004, 112, 105-113.
- E.S. Elmolla, M. Chaudhuri, Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process, J Hazard Mater, 2010, 173,445-9.
- N. Beqqal, M. Sh. Yahya, M. EL Karbane, A. Guessous, K. El Kacemi, Kinetic study of the degradation/mineralization of aqueous solutions contaminated with Rosuvastatin drug by Electro-Fenton: Influence of experimental parameters, J. Mater. Environ.Sci, 2017, 8(12), 4399-4407.
- T.G. Vasconcelos, D.M. Henriques, A. König, A.F. Martins, K. Kümmerer, Photodegradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products, Chemosphere, 2009, 76, 487-493.
- L. Ge, C. Halsall, C. Chen, P. Zhang, Q. Dong, Z. Yao, Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics – Gatifloxacin and balofloxacin: Degradation kinetics, photoproducts and risk to the aquatic environment, Sci. Total Environ, 2018, 633, 1192-1197.
- M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications: a review.Crit.Rev.Environ.Sci.Technol , 2014, 44, 2577-2641.
- W. Melliti, M. Errami, R. Salghi, A. Zarrouk, Lh. Bazzi, H. Zarrok, B. Hammouti, S. S. Al-Deyab. S. Fattouch, F. Raboudi, Electrochemical Treatment of Aqueous Wastes Agricole Containing Oxamyl by BDD-Anodic Oxidation, Int. J. Electrochem. Sci, 2013, 8, 10921-10931.
- M. Skoumal, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodriguez, E. Brillas, Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes. Chemosphere, 2008, 71(9), 1718-1729.
- M. Murati, N. Oturan, J.J. Aaron, A. Dirany, B. Tassin, Z. Zdravkovski, M.A. Oturan, Degradation and mineralization of sulcotrione and mesotrione in aqueous medium by the electro-Fenton process: a kinetic study, Environ. Sci. Poll. Res, 2012, 19, 1563-1573.
- M.A. Oturan, N. Oturan, C. Lahitte, S. Trevin, Production of hydroxyl radicals by electrochemically assisted Fenton's reagent. Application to the mineralization of an organic micropolluant, the pentachlorophenol, J. Electroanal.Chem, 2001, 507, 96-102.
- H. Zhang, C. Fei, D. Zhang, F. Tang, Degradation of 4-nitrophenol in aqueous medium by electro-fenton method, J. Hazard. Mater, 2007, 145, 227-232.
- E.J. Ruiz, C. Arias, E. Brillas, A. Hernndez-Ramirez, J.M. Peralta Pernandez, Mineralization of acid Yellow 36 azo dye by electro-fenton and solar photoelectron-fenton processes with boron-doped diamond anode. Chemosphere, 2011, 82, 495-501.
- M.C. Edelahi, N.Oturan, K. El kacemi, J.J. Aaron, M.A. Oturan, Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electrofenton process, Appl catalysis B: Environ, 2010, 97, 82-89.
- A. Kesraoui, N. Bellakhal, N. Oturan, M. Dachraoui, M.A. Oturan, Treatment of a mixture of three pesticides by photo-and electro-fenton process, Desalination, 2010, 250, 450-455.
- Y. Sh. Muna, M. El Karbane, N. Oturan, K. El Kacemi, M.A. Oturan, Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis, Environmental Technology,2016, 37:10, 1276-1287.
- M. Sh. Yahya, N. Oturan, K. El Kacemi, M. El Karbane, C.T. Aravindakumar, Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products, Chemosphere,2014, 117, 447-454.
- M. Sh. Yahya, N. Beqqal, A. Guessous, M.R. Arhoutane, K. El Kacemi, Degradation and mineralization of moxifloxacin antibiotic in aqueous medium by electro-Fenton process: Kinetic assessment and oxidation products. Cogent Chemistry, 2017, 3:1290021.
- M. Sarakha, P. Trebse, M. Piecha, Photocatalytic degradation of cholesterol-lowering statin drugs by TiO2-based catalyst.Kinetics, analytical studies and toxicity evaluation, Journal of photochemistry and photobiology A: Chemistry, 2010, 213, 61-69.
- T.C. Machado, T.M. Pizzolato, A. Arenzon, J. Segalin, M.A. Lansarin, Photocatalytic degradation of rosuvastatin: analytical studies and toxicity evaluations, Science of the total environ, 2015, 502, 571-577.
- J. Mielcarek, M. Kula, R. Zych, P. Grobelny, kinetis studies of fluvastatin photodegradation in solutions, React. Kinet. Catal. Lett, 2005, 86, 119-126.
- R.P Shah, A Sahu, S Singh, LC-MS/TOF, LC-MSn, on-line H/D exchange and LC-NMR studies on rosuvastatin degradation and in silico determination of toxicity of its degradation products: a comprehensive approach during drug development, Anal. Bioanal. Chem, 2013, 405, 3215-3231.
- E. Brillas I. Sirès, M.A. Oturan, Electrofenton process and related electrochemical technologies based on fenton's reaction chemistry. Chem. Rev, 2009, 109, 6570-6631.
- F. Fourcade, S. Yahiat, K. Elandaloussi, S. Brosillon, A. Amrane, Relevance of photocatalysis prior to biological treatment of organic pollutants-selection criteria, Chem. Eng. Technol, 2012, 35, 238-246.
- M. Bobu, S. Wilson, T. Greibrokk, E. Lundanes, I. Siminiceanu, Comparison of advanced oxidation processes and identification of monuron photodegradation products in aqueous solution, Chemosphere, 2006, 63, 1718-1727.
- A. Özcan, Y. Sahin, A.S. Koparal, M.A. Oturan, A comparative study on the efficiency of electro-Fenton process in the removal of propham from water, Appl. Catal. B, 2009, 89, 620-626.
- M. Panizza, M.A. Oturan, Degradation of Alizarin Red by electro-Fenton process using a carbon-felt cathode. Electrochim. Acta, 2011, 56, 7084-7087.
- S.C. Elaoud, M. Panizza, G. Cerisola, T. Mhiri, Coumaric acid degradation by electro-Fenton process, Journal of Electroanalytical Chemistry, 2012, 667, 19-23.
- C. Flox, S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi, Electro- Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium, Applied Catalysis B: Environmental, 2006, 67, 93-104.
- S. Hammami, N. Bellakhal, N. Oturan, N. Oturan, A., Dachraoui, M.,2008. Degradation of Acid Orange 7 by electrochemically generated _OH radicals in acidic aqueous medium using a boron-doped diamond of platinum anode A mechanistic study. Chemosphere 7,678–684.
- Y. Sun, J.J Pignatello, Photochemical reactions involved in the total mineralization of 2,4-D by iron (3+)/ hydrogen peroxide/UV. Environmental Science & Technology,1993, 27, 304-310.
- S. L. Syed, J. Siji, USP purity analysis of pravastatin sodium using the Agilent 1120 compact LC Agilent technologies Bangalore, India, publication number 5989-9869EN, 2010.
- S.L. Syed, Assessment of in-process impurities in pravastatin using the Agilent 6410 Triple Quadrupole LC/MS in negative mode, Agilent technologies Bangalore, India, publication number 5989-9343EN, 2008.
- B. Razavi, W. Song, H. Santoke, W.J. Cooper, Treatment of statin compounds by advanced oxidation processes: kinetic considerations and destruction mechanisms, radiation physics and chemistry, 2011, 80, 453-464.
- A. Kocijan, R. Grahek, L. Zupanéié- Kralj, Identification of an impurity in Pravastatin by Application of Collision-Activated Decomposition Mass spectra, acta chim slov, 2006, 53, 464-468.
- T.C. Machado, T.M. Pizzolato, A. Arenzon, J. Segalin, M.A. Lansarin, Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations. Science of the Total Environment, 2015, 502, 571-577.
- J. Segalin, C. Sirtori, L. Jank, M.F.S. Lima, P.R. Livotto, T.C. Machado, A.M. Lansarin, T.M. Pizzolato, Identification of transformation products of rosuvastatin in water during ZnO photocatalytic degradation through the use of associated LC-QTOF-MS to computational chemistry Journal of Hazardous Materials, 2015, 299, 78-85.
- S. Sulaiman, M. Khamis, S. Nir, F. Lelario, L. Scrano, R. Karaman, Stability and Removal of Several Statins from Wastewater Using Different Treatment Technologies, International Case Studies Journal, 2015, 4(6), 32-50.
- A. Tegzea, G. S¡gia, K. Kov¡csa, R. Homloka, T.Tótha, C. Moh¡csi-Farkasd, L. Wojn¡rovitsa, E. Tak¡csa, Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products. Radiation Physics and Chemistry, 2018, 147,101-105.
- N.A. Salles, F. Fourcade, F. Geneste, D. Floner, A. Amrane, Relevance of an electrochemical process prior to biological treatment for the removal of an organophosphorus pesticide, phosmet, J. Hazard. Mater, 2010, 181, 617-623.
- C. Comninellis, A. Kapalka, S. Malato, S.A. Poulios, I. Mantzavinos, Advanced oxidation process for water treatment: advances and trends for R&D. J. Chem Technol Biotechnol, 2008, 83, 769-776.
- P. Núñez, H.K. Hansen, N. RodrÃguez, J. Guzm¡n, C. Gutiérrez, Electrochemical generation on Fenton`s reagent to treat spent caustic wastewater. Separ. Sci. Technol, 2009, 44, 2223-2233.
- S. Khoufi, F. Aloui, S. Sayadi, Pilot scale hybrid process for olive mill wastewater treatment and reuse, Chem. Eng. Process, 2009, 48, 643-650.
- M R. Arhoutane, M Sh. Yahya, M. El Karbane, A. Guessous, H. Chakchak, K. El Kacemi, Removal of pyrazinamide and its by-products from water: Treatment by electro-Fenton process and feasibility of a biological post-treatment, Mediterr.J.Chem., 2019, 8(1), 53-65.
DOI: http://dx.doi.org/10.13171/mjc8219050302nb
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Mediterranean Journal of Chemistry